Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 12(33): 37188-37196, 2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32814392

RESUMEN

Developing a safe and long-lasting lithium (Li) metal battery is crucial for high-energy applications. However, its poor cycling stability due to Li dendrite formation and excessive Li pulverization is the major hurdle for its practical applications. Here, we present a silica (SiO2) nanoparticle-dispersed colloidal electrolyte (NDCE) and its design principle for suppressing Li dendrite formation. SiO2 nanoclusters in the NDCE play roles in enhancing the Li+ transference number and increasing the Li+ diffusivity in the vicinity of the Li-plating substrate. The NDCE enables less-dendritic Li plating by manipulating the nucleation-growth mode and extending Sand's time. Moreover, SiO2 can interplay with the electrolyte components at the Li-metal surface, enriching fluorinated compounds in the solid electrolyte interface layer. The initial control of the Li plating morphology and SEI structure by the NDCE leads to a more uniform and denser Li deposition upon subsequent cycling, resulting in threefold enhancement of the cycle life. The efficacy of the NDCEs has been further demonstrated by the practical battery design, featuring a commercial-level cathode and thin Li-metal (40 µm) anode.

2.
J Phys Chem Lett ; 11(18): 7849-7856, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32845634

RESUMEN

To mitigate a global crisis of Li depletion, potassium-based rechargeable batteries have received significant attention because of their low cost and high specific energy density. In particular, the rechargeable potassium oxygen (K-O2) battery has been recognized as a promising energy storage technology because of its low overpotential and high round-trip efficiency based on the single-electron redox chemistry of potassium superoxide. Despite these merits, research on the development of K-O2 batteries is still in its early stages owing to a lack of understanding of the fundamental reaction chemistry and the difficulties encountered in handling, in terms of practical acceptability. Hence, it is necessary to summarize the representative works and provide overall insights on K-O2 batteries and recommendations for future studies. In this Perspective, we critically review the important scientific aspects of K-O2 batteries, discuss the current challenges encountered, and provide recommendations from the scientific and practical points of view. We hope that this Perspecitve will be helpful in designing innovative and advanced K-O2 batteries.

3.
Chem Rev ; 120(14): 6626-6683, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32134255

RESUMEN

The goal of limiting global warming to 1.5 °C requires a drastic reduction in CO2 emissions across many sectors of the world economy. Batteries are vital to this endeavor, whether used in electric vehicles, to store renewable electricity, or in aviation. Present lithium-ion technologies are preparing the public for this inevitable change, but their maximum theoretical specific capacity presents a limitation. Their high cost is another concern for commercial viability. Metal-air batteries have the highest theoretical energy density of all possible secondary battery technologies and could yield step changes in energy storage, if their practical difficulties could be overcome. The scope of this review is to provide an objective, comprehensive, and authoritative assessment of the intensive work invested in nonaqueous rechargeable metal-air batteries over the past few years, which identified the key problems and guides directions to solve them. We focus primarily on the challenges and outlook for Li-O2 cells but include Na-O2, K-O2, and Mg-O2 cells for comparison. Our review highlights the interdisciplinary nature of this field that involves a combination of materials chemistry, electrochemistry, computation, microscopy, spectroscopy, and surface science. The mechanisms of O2 reduction and evolution are considered in the light of recent findings, along with developments in positive and negative electrodes, electrolytes, electrocatalysis on surfaces and in solution, and the degradative effect of singlet oxygen, which is typically formed in Li-O2 cells.

4.
Nat Commun ; 10(1): 1380, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914647

RESUMEN

Non-aqueous lithium-oxygen batteries cycle by forming lithium peroxide during discharge and oxidizing it during recharge. The significant problem of oxidizing the solid insulating lithium peroxide can greatly be facilitated by incorporating redox mediators that shuttle electron-holes between the porous substrate and lithium peroxide. Redox mediator stability is thus key for energy efficiency, reversibility, and cycle life. However, the gradual deactivation of redox mediators during repeated cycling has not conclusively been explained. Here, we show that organic redox mediators are predominantly decomposed by singlet oxygen that forms during cycling. Their reaction with superoxide, previously assumed to mainly trigger their degradation, peroxide, and dioxygen, is orders of magnitude slower in comparison. The reduced form of the mediator is markedly more reactive towards singlet oxygen than the oxidized form, from which we derive reaction mechanisms supported by density functional theory calculations. Redox mediators must thus be designed for stability against singlet oxygen.

5.
ACS Appl Mater Interfaces ; 10(13): 10860-10869, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29513511

RESUMEN

Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.

6.
ACS Appl Mater Interfaces ; 10(1): 526-533, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29260857

RESUMEN

As a substitute for the current lithium-ion batteries, rechargeable lithium oxygen batteries have attracted much attention because of their theoretically high energy density, but many challenges continue to exist. For the development of these batteries, understanding and controlling the main discharge product Li2O2 (lithium peroxide) are of paramount importance. Here, we comparatively analyzed the amount of Li2O2 in the cathodes discharged at various discharge capacities and current densities in dimethyl sulfoxide (DMSO) and tetraethylene glycol dimethyl ether (TEGDME) solvents. The precise assessment entailed revisiting and revising the UV-vis titration analysis. The amount of Li2O2 electrochemically formed in DMSO was less than that formed in TEGDME at the same capacity and even at a much higher full discharge capacity in DMSO than in TEGDME. On the basis of our analytical experimental results, this unexpected result was ascribed to the presence of soluble LiO2-like intermediates that remained in the DMSO solvent and the chemical transformation of Li2O2 to LiOH, both of which originated from the inherent properties of the DMSO solvent.

7.
J Am Chem Soc ; 139(34): 11690-11693, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28789521

RESUMEN

In this study, we present a new aprotic solvent, 2,4-dimethoxy-2,4-dimethylpentan-3-one (DMDMP), which is designed to resist nucleophilic attack and hydrogen abstraction by reduced oxygen species. Li-O2 cells using DMDMP solutions were successfully cycled. By various analytical measurements, we showed that even after prolonged cycling only a negligible amount of DMDMP was degraded. We suggest that the observed capacity fading of the Li-O2 DMDMP-based cells was due to instability of the lithium anode during cycling. The stability toward oxygen species makes DMDMP an excellent solvent candidate for many kinds of electrochemical systems which involve oxygen reduction and assorted evaluation reactions.

8.
ACS Appl Mater Interfaces ; 9(5): 4352-4361, 2017 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-27786463

RESUMEN

Aprotic Li-O2 battery is an exciting concept. The enormous theoretical energy density and cell assembly simplicity make this technology very appealing. Nevertheless, the instability of the cell components, such as cathode, anode, and electrolyte solution during cycling, does not allow this technology to be fully commercialized. One of the intrinsic challenges facing researchers is the use of lithium metal as an anode in Li-O2 cells. The high activity toward chemical moieties and lack of control of the dissolution/deposition processes of lithium metal makes this anode material unreliable. The safety issues accompanied by these processes intimidate battery manufacturers. The need for a reliable anode is crucial. In this work we have examined the replacement of metallic lithium anode in Li-O2 cells with lithiated hard carbon (HC) electrodes. HC anodes have many benefits that are suitable for oxygen reduction in the presence of solvated lithium cations. In contrast to lithium metal, the insertion of lithium cations into the carbon host is much more systematic and safe. In addition, with HC anodes we can use aprotic solvents such as glymes that are suitable for oxygen reduction applications. By contrast, lithium cations fail to intercalate reversibly into ordered carbon such as graphite and soft carbons using ethereal electrolyte solutions, due to detrimental co-intercalation of solvent molecules with Li ions into ordered carbon structures. The hard carbon electrodes were prelithiated prior to being used as anodes in the Li-O2 rechargeable battery systems. Full cells containing diglyme based solutions and a monolithic carbon cathode were measured by various electrochemical methods. To identify the products and surface films that were formed during cells operation, both the cathodes and anodes were examined ex situ by XRD, FTIR, and electron microscopy. The HC anodes were found to be a suitable material for (Li-ion)-O2 cell. Although there are still many challenges to tackle, this study offers a more practical direction for this promising battery technology and sets up a platform for further systematic optimization of its various components.

9.
ACS Nano ; 9(4): 4129-37, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25801846

RESUMEN

Although lithium-oxygen batteries are attracting considerable attention because of the potential for an extremely high energy density, their practical use has been restricted owing to a low energy efficiency and poor cycle life compared to lithium-ion batteries. Here we present a nanostructured cathode based on molybdenum carbide nanoparticles (Mo2C) dispersed on carbon nanotubes, which dramatically increase the electrical efficiency up to 88% with a cycle life of more than 100 cycles. We found that the Mo2C nanoparticle catalysts contribute to the formation of well-dispersed lithium peroxide nanolayers (Li2O2) on the Mo2C/carbon nanotubes with a large contact area during the oxygen reduction reaction (ORR). This Li2O2 structure can be decomposed at low potential upon the oxygen evolution reaction (OER) by avoiding the energy loss associated with the decomposition of the typical Li2O2 discharge products.

10.
Chem Commun (Camb) ; 50(87): 13307-10, 2014 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-24934934

RESUMEN

A positive effect of the polyacrylic acid (PAA)-carboxymethyl cellulose (CMC) binder to enhance the performance of an oxide-based anode was reported in batteries. A series of super high capacity and cycling ability oxide powders rarely achieved before was obtained, particularly most of them without any specific carbon modification and/or morphology control.

11.
Chemphyschem ; 15(10): 2070-6, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-24962019

RESUMEN

A new physical pulverization strategy has been developed to prepare a highly active composite of CoOx and crushed graphite (CG) for the cathode in lithium-oxygen batteries. The effect of CoOx loading on the charge potential in the oxygen evolution reaction (Li(2)O(2) →2 Li(+) +O(2) +2e(-)) was investigated in coin-cell tests. The CoOx (38.9 wt %)/CG composite showed a low charge potential of 3.92 V with a delivered capacity of 2 mAh cm(-2) under a current density of 0.2 mA cm(-2). The charge potential was 4.10 and 4.15 V at a capacity of 5 and 10 mAh cm(-2), respectively, with a current density of 0.5 mA cm(-2). The stability of the electrolyte and discharge product on the gas-diffusion layer after the cycling were preliminarily characterized by (1)H nuclear magnetic resonance spectroscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The high activity of the composite was further analyzed by electrochemical impedance spectroscopy, cyclic voltammetry, and potential-step chronoamperometry. The results indicate that our near-dry milling method is an effective and green approach to preparing a nanocomposite cathode with high surface area and porosity, while using less solvent. Its relative simplicity compared with the traditional solution method could facilitate its widespread application in catalysis, energy storage, and materials science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA