Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702188

RESUMEN

Norepinephrine (NE), a neuromodulator released by locus coeruleus (LC) neurons throughout cortex, influences arousal and learning through extra-synaptic vesicle exocytosis. While NE within cortical regions has been viewed as a homogenous field, recent studies have demonstrated heterogeneous axonal dynamics and advances in GPCR-based fluorescent sensors permit direct observation of the local dynamics of NE at cellular scale. To investigate how the spatiotemporal dynamics of NE release in the prefrontal cortex (PFC) affect neuronal firing, we employed in vivo two-photon imaging of layer 2/3 of PFC in order to observe fine-scale neuronal calcium and NE dynamics concurrently. In this proof of principle study, we found that local and global NE fields can decouple from one another, providing a substrate for local NE spatiotemporal activity patterns. Optic flow analysis revealed putative release and reuptake events which can occur at the same location, albeit at different times, indicating the potential to create a heterogeneous NE field. Utilizing generalized linear models, we demonstrated that cellular Ca2+ fluctuations are influenced by both the local and global NE field. However, during periods of local/global NE field decoupling, the local field drives cell firing dynamics rather than the global field. These findings underscore the significance of localized, phasic NE fluctuations for structuring cell firing, which may provide local neuromodulatory control of cortical activity.Significance Statement NE is a neuromodulator which plays a critical role in learning and arousal, but understanding its spatial scale has been limited by technical barriers. Here, we utilized two-photon imaging of GPCR-based sensors, light sheet imaging, and computational modeling to gain insight into the fine scale organization of NE in PFC. We found that NE can influence neuronal activity at a local scale within cortex, which has not been shown before, and we developed new computational approaches to analyzing two-photon imaging of GPCR based fluorescent sensors. This insight will facilitate improved understanding of NE's role in motivated behaviors, as well as new approaches for understanding local neurotransmitter function.

2.
bioRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328186

RESUMEN

Norepinephrine (NE) and acetylcholine (ACh) are neuromodulators that are crucial for learning and decision-making. In the cortex, NE and ACh are released at specific sites along neuromodulatory axons, which would constrain their spatiotemporal dynamics at the subcellular scale. However, how the fluctuating patterns of NE and ACh signaling may be linked to behavioral events is unknown. Here, leveraging genetically encoded NE and ACh indicators, we use two-photon microscopy to visualize neuromodulatory signals in the superficial layer of the mouse medial frontal cortex during decision-making. Head-fixed mice engage in a competitive game called matching pennies against a computer opponent. We show that both NE and ACh transients carry information about decision-related variables including choice, outcome, and reinforcer. However, the two neuromodulators differ in their spatiotemporal pattern of task-related activation. Spatially, NE signals are more segregated with choice and outcome encoded at distinct locations, whereas ACh signals can multiplex and reflect different behavioral correlates at the same site. Temporally, task-driven NE transients were more synchronized and peaked earlier than ACh transients. To test functional relevance, using optogenetics we found that evoked elevation of NE, but not ACh, in the medial frontal cortex increases the propensity of the animals to switch and explore alternate options. Taken together, the results reveal distinct spatiotemporal patterns of rapid ACh and NE transients at the subcellular scale during decision-making in mice, which may endow these neuromodulators with different ways to impact neural plasticity to mediate learning and adaptive behavior.

3.
eNeuro ; 10(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38151324

RESUMEN

Dysfunction in the gene SCN2A, which encodes the voltage-gated sodium channel Nav1.2, is strongly associated with neurodevelopmental disorders including autism spectrum disorder and intellectual disability (ASD/ID). This dysfunction typically manifests in these disorders as a haploinsufficiency, where loss of one copy of a gene cannot be compensated for by the other allele. Scn2a haploinsufficiency affects a range of cells and circuits across the brain, including associative neocortical circuits that are important for cognitive flexibility and decision-making behaviors. Here, we tested whether Scn2a haploinsufficiency has any effect on a dynamic foraging task that engages such circuits. Scn2a +/- mice and wild-type (WT) littermates were trained on a choice behavior where the probability of reward between two options varied dynamically across trials and where the location of the high reward underwent uncued reversals. Despite impairments in Scn2a-related neuronal excitability, we found that both male and female Scn2a +/- mice performed these tasks as well as wild-type littermates, with no behavioral difference across genotypes in learning or performance parameters. Varying the number of trials between reversals or probabilities of receiving reward did not result in an observable behavioral difference, either. These data suggest that, despite heterozygous loss of Scn2a, mice can perform relatively complex foraging tasks that make use of higher-order neuronal circuits.


Asunto(s)
Haploinsuficiencia , Canal de Sodio Activado por Voltaje NAV1.2 , Animales , Ratones , Canal de Sodio Activado por Voltaje NAV1.2/genética , Masculino , Femenino , Conducta Animal , Aprendizaje , Recompensa , Toma de Decisiones , Humanos , Modelos Animales
4.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37502881

RESUMEN

Norepinephrine (NE), a neuromodulator released by locus coeruleus neurons throughout cortex, influences arousal and learning through extra-synaptic vesicle exocytosis. While NE within cortical regions has been viewed as a homogenous field, recent studies have demonstrated heterogeneous axonal dynamics and advances in GPCR-based fluorescent sensors permit direct observation of the local dynamics of NE at cellular scale. To investigate how the spatiotemporal dynamics of NE release in the PFC affect neuronal firing, we employed in-vivo two-photon imaging of layer 2/3 of PFC in order to observe fine-scale neuronal calcium and NE dynamics concurrently. We found that local and global NE fields can decouple from one another, providing a substrate for local NE spatiotemporal activity patterns. Optic flow analysis revealed putative release and reuptake events which can occur at the same location, albeit at different times, indicating the potential to create a heterogeneous NE field. Utilizing generalized linear models, we demonstrated that cellular Ca2+ fluctuations are influenced by both the local and global NE field. However, during periods of local/global NE field decoupling, the local field drives cell firing dynamics rather than the global field. These findings underscore the significance of localized, phasic NE fluctuations for structuring cell firing, which may provide local neuromodulatory control of cortical activity.

5.
eNeuro ; 10(6)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37295945

RESUMEN

Chronic nicotine results in dependence with withdrawal symptoms on discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity; however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene Fos during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity, they were organized into two anticorrelated networks that were separated into basal forebrain-projecting and brainstem-thalamic-projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2, Chrna3, Chrna10, and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in Fos expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced Fos expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence.


Asunto(s)
Receptores Nicotínicos , Síndrome de Abstinencia a Sustancias , Masculino , Ratones , Animales , Nicotina/farmacología , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Encéfalo/metabolismo , Colinérgicos , ARN Mensajero , Receptores Colinérgicos/metabolismo
7.
Cogn Affect Behav Neurosci ; 23(3): 894-904, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37165181

RESUMEN

Traumatic events can lead to lifelong, inflexible adaptations in threat perception and behavior, which characterize posttraumatic stress disorder (PTSD). This process involves associations between sensory cues and internal states of threat and then generalization of the threat responses to previously neutral cues. However, most formulations neglect adaptations to threat that are not specific to those associations. To incorporate nonassociative responses to threat, we propose a computational theory of PTSD based on adaptation to the frequency of traumatic events by using a reinforcement learning momentum model. Recent threat prediction errors generate momentum that influences subsequent threat perception in novel contexts. This model fits primary data acquired from a mouse model of PTSD, in which unpredictable footshocks in one context accelerate threat learning in a novel context. The theory is consistent with epidemiological data that show that PTSD incidence increases with the number of traumatic events, as well as the disproportionate impact of early life trauma. Because the theory proposes that PTSD relates to the average of recent threat prediction errors rather than the strength of a specific association, it makes novel predictions for the treatment of PTSD.

8.
Neurosci Biobehav Rev ; 149: 105158, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019249

RESUMEN

In a social environment, it is essential for animals to consider the behavior of others when making decisions. To quantitatively assess such social decisions, games offer unique advantages. Games may have competitive and cooperative components, modeling situations with antagonistic and shared objectives between players. Games can be analyzed by mathematical frameworks, including game theory and reinforcement learning, such that an animal's choice behavior can be compared against the optimal strategy. However, so far games have been underappreciated in neuroscience research, particularly for rodent studies. In this review, we survey the varieties of competitive and cooperative games that have been tested, contrasting strategies employed by non-human primates and birds with rodents. We provide examples of how games can be used to uncover neural mechanisms and explore species-specific behavioral differences. We assess critically the limitations of current paradigms and propose improvements. Together, the synthesis of current literature highlights the advantages of using games to probe the neural basis of social decisions for neuroscience studies.


Asunto(s)
Toma de Decisiones , Aprendizaje , Animales , Refuerzo en Psicología , Conducta de Elección
9.
bioRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034602

RESUMEN

Chronic nicotine results in dependence with withdrawal symptoms upon discontinuation of use, through desensitization of nicotinic acetylcholine receptors and altered cholinergic neurotransmission. Nicotine withdrawal is associated with increased whole-brain functional connectivity and decreased network modularity, however, the role of cholinergic neurons in those changes is unknown. To identify the contribution of nicotinic receptors and cholinergic regions to changes in the functional network, we analyzed the contribution of the main cholinergic regions to brain-wide activation of the immediate early-gene FOS during withdrawal in male mice and correlated these changes with the expression of nicotinic receptor mRNA throughout the brain. We show that the main functional connectivity modules included the main long-range cholinergic regions, which were highly synchronized with the rest of the brain. However, despite this hyperconnectivity they were organized into two anticorrelated networks that were separated into basal forebrain projecting and brainstem-thalamic projecting cholinergic regions, validating a long-standing hypothesis of the organization of the brain cholinergic systems. Moreover, baseline (without nicotine) expression of Chrna2 , Chrna3 , Chrna10 , and Chrnd mRNA of each brain region correlated with withdrawal-induced changes in FOS expression. Finally, by mining the Allen Brain mRNA expression database, we were able to identify 1755 gene candidates and three pathways (Sox2-Oct4-Nanog, JAK-STAT, and MeCP2-GABA) that may contribute to nicotine withdrawal-induced FOS expression. These results identify the dual contribution of the basal forebrain and brainstem-thalamic cholinergic systems to whole-brain functional connectivity during withdrawal; and identify nicotinic receptors and novel cellular pathways that may be critical for the transition to nicotine dependence. Significance Statement: Discontinuation of nicotine use in dependent users is associated with increased whole-brain activation and functional connectivity and leads to withdrawal symptoms. Here we investigated the contribution of the nicotinic cholinergic receptors and main cholinergic projecting brain areas in the whole-brain changes associated with withdrawal. This not only allowed us to visualize and confirm the previously described duality of the cholinergic brain system using this novel methodology, but also identify nicotinic receptors together with 1751 other genes that contribute, and could thus be targets for treatments against, nicotine withdrawal and dependence.

10.
Neuropsychopharmacology ; 48(9): 1257-1266, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37015972

RESUMEN

Serotonergic psychedelics are gaining increasing interest as potential therapeutics for a range of mental illnesses. Compounds with short-lived subjective effects may be clinically useful because dosing time would be reduced, which may improve patient access. One short-acting psychedelic is 5-MeO-DMT, which has been associated with improvement in depression and anxiety symptoms in early phase clinical studies. However, relatively little is known about the behavioral and neural mechanisms of 5-MeO-DMT, particularly the durability of its long-term effects. Here we characterized the effects of 5-MeO-DMT on innate behaviors and dendritic architecture in mice. We showed that 5-MeO-DMT induces a dose-dependent increase in head-twitch response that is shorter in duration than that induced by psilocybin at all doses tested. 5-MeO-DMT also substantially suppresses social ultrasonic vocalizations produced during mating behavior. 5-MeO-DMT produces long-lasting increases in dendritic spine density in the mouse medial frontal cortex that are driven by an elevated rate of spine formation. However, unlike psilocybin, 5-MeO-DMT did not affect the size of dendritic spines. These data provide insights into the behavioral and neural consequences underlying the action of 5-MeO-DMT and highlight similarities and differences with those of psilocybin.


Asunto(s)
Alucinógenos , Trastornos Mentales , Ratones , Animales , Psilocibina , Instinto , Metoxidimetiltriptaminas/farmacología , Trastornos Mentales/tratamiento farmacológico
11.
ACS Chem Neurosci ; 14(3): 468-480, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36630309

RESUMEN

Psilocybin is a psychedelic with therapeutic potential. While there is growing evidence that psilocybin exerts its beneficial effects through enhancing neural plasticity, the exact brain regions involved are not completely understood. Determining the impact of psilocybin on plasticity-related gene expression throughout the brain can broaden our understanding of the neural circuits involved in psychedelic-evoked neural plasticity. In this study, whole-brain serial two-photon microscopy and light sheet microscopy were employed to map the expression of the immediate early gene, c-Fos, in male and female mice. The drug-induced c-Fos expression following psilocybin administration was compared to that of subanesthetic ketamine and saline control. Psilocybin and ketamine produced acutely comparable elevations in c-Fos expression in numerous brain regions, including anterior cingulate cortex, locus coeruleus, primary visual cortex, central and basolateral amygdala, medial and lateral habenula, and claustrum. Select regions exhibited drug-preferential differences, such as dorsal raphe and insular cortex for psilocybin and the CA1 subfield of hippocampus for ketamine. To gain insights into the contributions of receptors and cell types, the c-Fos expression maps were related to brain-wide in situ hybridization data. The transcript analyses showed that the endogenous levels of Grin2a and Grin2b predict whether a cortical region is sensitive to drug-evoked neural plasticity for both ketamine and psilocybin. Collectively, the systematic mapping approach produced an unbiased list of brain regions impacted by psilocybin and ketamine. The data are a resource that highlights previously underappreciated regions for future investigations. Furthermore, the robust relationships between drug-evoked c-Fos expression and endogenous transcript distributions suggest glutamatergic receptors as a potential convergent target for how psilocybin and ketamine produce their rapid-acting and long-lasting therapeutic effects.


Asunto(s)
Alucinógenos , Ketamina , Masculino , Femenino , Ratones , Animales , Ketamina/farmacología , Psilocibina/farmacología , Alucinógenos/farmacología , Alucinógenos/metabolismo , Genes Inmediatos-Precoces , Encéfalo/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Dorsal del Rafe/metabolismo
12.
J Neurosci ; 42(45): 8439-8449, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351821

RESUMEN

Psychedelic drugs have reemerged as tools to treat several brain disorders. Cultural attitudes toward them are changing, and scientists are once again investigating the neural mechanisms through which these drugs impact brain function. The significance of this research direction is reflected by recent work, including work presented by these authors at the 2022 meeting of the Society for Neuroscience. As of 2022, there were hundreds of clinical trials recruiting participants for testing the therapeutic effects of psychedelics. Emerging evidence suggests that psychedelic drugs may exert some of their long-lasting therapeutic effects by inducing structural and functional neural plasticity. Herein, basic and clinical research attempting to elucidate the mechanisms of these compounds is showcased. Topics covered include psychedelic receptor binding sites, effects of psychedelics on gene expression, and on dendrites, and psychedelic effects on microcircuitry and brain-wide circuits. We describe unmet clinical needs and the current state of translation to the clinic for psychedelics, as well as other unanswered basic neuroscience questions addressable with future studies.


Asunto(s)
Alucinógenos , Neurociencias , Humanos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Encéfalo , Plasticidad Neuronal
13.
Sci Adv ; 8(42): eabm5217, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36260661

RESUMEN

Dopamine signaling from the ventral tegmental area (VTA) plays critical roles in reward-related behaviors, but less is known about the functions of neighboring VTA GABAergic neurons. We show here that a primary target of VTA GABA projection neurons is the ventral pallidum (VP). Activity of VTA-to-VP-projecting GABA neurons correlates consistently with size and palatability of the reward and does not change following cue learning, providing a direct measure of reward value. Chemogenetic stimulation of this GABA projection increased activity of a subset of VP neurons that were active while mice were seeking reward. Optogenetic stimulation of this pathway improved performance in a cue-reward task and maintained motivation to work for reward over days. This VTA GABA projection provides information about reward value directly to the VP, likely distinct from the prediction error signal carried by VTA dopamine neurons.

14.
Nat Neurosci ; 25(11): 1407-1419, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280799

RESUMEN

Psychedelics are serotonin 2A receptor agonists that can lead to profound changes in perception, cognition and mood. In this review, we focus on the basic neurobiology underlying the action of psychedelic drugs. We first discuss chemistry, highlighting the diversity of psychoactive molecules and the principles that govern their potency and pharmacokinetics. We describe the roles of serotonin receptors and their downstream molecular signaling pathways, emphasizing key elements for drug discovery. We consider the impact of psychedelics on neuronal spiking dynamics in several cortical and subcortical regions, along with transcriptional changes and sustained effects on structural plasticity. Finally, we summarize neuroimaging results that pinpoint effects on association cortices and thalamocortical functional connectivity, which inform current theories of psychedelic action. By synthesizing knowledge across the chemical, molecular, neuronal, and network levels, we hope to provide an integrative perspective on the neural mechanisms responsible for the acute and enduring effects of psychedelics on behavior.


Asunto(s)
Alucinógenos , Alucinógenos/farmacología , Alucinógenos/química , Alucinógenos/metabolismo , Cognición , Agonistas de Receptores de Serotonina
15.
eNeuro ; 9(2)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35168951

RESUMEN

In a competitive game involving an animal and an opponent, the outcome is contingent on the choices of both players. To succeed, the animal must continually adapt to competitive pressure, or else risk being exploited and lose out on rewards. In this study, we demonstrate that head-fixed male mice can be trained to play the iterative competitive game "matching pennies" against a virtual computer opponent. We find that the animals' performance is well described by a hybrid computational model that includes Q-learning and choice kernels. Comparing between matching pennies and a non-competitive two-armed bandit task, we show that the tasks encourage animals to operate at different regimes of reinforcement learning. To understand the involvement of neuromodulatory mechanisms, we measure fluctuations in pupil size and use multiple linear regression to relate the trial-by-trial transient pupil responses to decision-related variables. The analysis reveals that pupil responses are modulated by observable variables, including choice and outcome, as well as latent variables for value updating, but not action selection. Collectively, these results establish a paradigm for studying competitive decision-making in head-fixed mice and provide insights into the role of arousal-linked neuromodulation in the decision process.


Asunto(s)
Toma de Decisiones , Pupila , Animales , Toma de Decisiones/fisiología , Aprendizaje/fisiología , Masculino , Ratones , Pupila/fisiología , Refuerzo en Psicología , Recompensa
16.
Curr Biol ; 32(2): R63-R67, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35077687

RESUMEN

Psychedelics are compounds that alter consciousness by acting on serotonin receptors in the brain. The term 'psychedelic', from the Greek for mind manifesting, refers to the drugs' subjective effects and was first proposed by Humphry Osmond in 1956. Other terms have been used to emphasize different aspects of the psychological experiences produced by various related compounds, including hallucinogens (perceptual), entheogens (spiritual), and empathogens or entactogens (social/emotional). The diversity in terminology reflects the existence of hundreds of potential psychedelic compounds with a spectrum of behavioral and neurobiological effects. Recent data on the effectiveness of psychedelics for treating mental illnesses has led to a resurgence of interest in their neurobiological effects. The purpose of this Primer is to provide those interested in the field of psychedelics with a concise and accessible overview of the scientific data.


Asunto(s)
Alucinógenos , Trastornos Mentales , Encéfalo , Estado de Conciencia , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Humanos , Trastornos Mentales/tratamiento farmacológico , Neurobiología
17.
Nat Neurosci ; 24(9): 1324-1337, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34341584

RESUMEN

Inference of action potentials ('spikes') from neuronal calcium signals is complicated by the scarcity of simultaneous measurements of action potentials and calcium signals ('ground truth'). In this study, we compiled a large, diverse ground truth database from publicly available and newly performed recordings in zebrafish and mice covering a broad range of calcium indicators, cell types and signal-to-noise ratios, comprising a total of more than 35 recording hours from 298 neurons. We developed an algorithm for spike inference (termed CASCADE) that is based on supervised deep networks, takes advantage of the ground truth database, infers absolute spike rates and outperforms existing model-based algorithms. To optimize performance for unseen imaging data, CASCADE retrains itself by resampling ground truth data to match the respective sampling rate and noise level; therefore, no parameters need to be adjusted by the user. In addition, we developed systematic performance assessments for unseen data, openly released a resource toolbox and provide a user-friendly cloud-based implementation.


Asunto(s)
Artefactos , Encéfalo/fisiología , Aprendizaje Profundo , Neuroimagen/métodos , Neuronas/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , Bases de Datos Factuales , Ratones , Modelos Neurológicos , Pez Cebra
18.
Nat Neurosci ; 24(10): 1345-1347, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34413511

Asunto(s)
Corteza Motora
19.
Neuron ; 109(16): 2535-2544.e4, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34228959

RESUMEN

Psilocybin is a serotonergic psychedelic with untapped therapeutic potential. There are hints that the use of psychedelics can produce neural adaptations, although the extent and timescale of the impact in a mammalian brain are unknown. In this study, we used chronic two-photon microscopy to image longitudinally the apical dendritic spines of layer 5 pyramidal neurons in the mouse medial frontal cortex. We found that a single dose of psilocybin led to ∼10% increases in spine size and density, driven by an elevated spine formation rate. The structural remodeling occurred quickly within 24 h and was persistent 1 month later. Psilocybin also ameliorated stress-related behavioral deficit and elevated excitatory neurotransmission. Overall, the results demonstrate that psilocybin-evoked synaptic rewiring in the cortex is fast and enduring, potentially providing a structural trace for long-term integration of experiences and lasting beneficial actions.


Asunto(s)
Dendritas/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Psilocibina/farmacología , Animales , Corteza Cerebral/efectos de los fármacos , Dendritas/fisiología , Espinas Dendríticas/fisiología , Femenino , Masculino , Ratones , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...