Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Global Spine J ; 13(3): 855-860, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36074993

RESUMEN

STUDY DESIGN: Cross-Sectional Analysis. OBJECTIVES: To summarize medical device reports (MDRs) between August 1, 2017 and November 30, 2021 relating to robot-assisted spine systems within the Manufacturer and User Facility Device Experience (MAUDE) database maintained by The Food and Drug Administration (FDA). METHODS: The MAUDE database was abstract for all MDRs relating to each FDA-approved robot-assisted spine system. Event descriptions were reviewed and characterized into specific event types. Outcome measures include specific robot-assisted spine systems and reported events as detailed by the MDRs. All data is de-identified and in compliance with the Health Insurance Portability and Accountability Act (HIPAA). RESULTS: There were 263 MDRs consisting of 265 reported events. Misplaced screws represented 61.5% (n = 163) of reported events. Of the 163 reported events, 57.1% (n = 93) described greater than 1 misplaced screw, 15.3% (n = 25) required return to the operating room, 8.6% (n = 14) resulted in neurologic injury, 4.3% (n = 7) resulted in dural tear, and 1.2% (n = 2) resulted in hemorrhage or bleeding. Reported events other than misplaced screws included system imprecision detected prior to screw placement (58/265, 21.9%), mechanical failure (23/265, 8.7%), and software failure (18/265, 6.8%). CONCLUSIONS: As more robot-assisted spine systems gain FDA approval and the adoption of these systems continues to grow, documenting and understanding the range of reported events associated with each "tool" is imperative to balancing patient safety with surgical innovation. This study of the MAUDE database provides a unique summary of reported events associated with robot-assisted spine systems that is not directly linked to a research setting.

2.
Blood ; 128(2): 249-52, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27207793

RESUMEN

Patient-derived multiple myeloma (MM) cells are difficult to establish in culture or propagate in vivo in murine model. Here, we describe a zebrafish xenograft model that permits rapid, reliable growth of human MM cells injected into the perivitelline space of albino zebrafish (Casper) embryos 48 hours postfertilization. MM1S and MM1R MM cell lines and primary CD138(+) MM cells were stained with CM-Dil red fluorescent dye and suspended in Matrigel prior to their injection. The cells grew at the site of injection and disseminated throughout the developing embryos and larvae. Tumor size was quantified by fluorescent microscopy, and cell fate was followed for 4 days. All of the cell line xenografts showed responses similar to those previously observed with in vitro assays. CD138(+) plasma cell xenografts derived from MM patients also grew and were inhibited by the same drugs patients had responded to clinically. Using this technique, we can assess drug sensitivity or resistance with a small number of MM cells in a short period. This raises the possibility that one might be able to assess drug sensitivity in real time with readily obtainable clinical samples.


Asunto(s)
Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Pez Cebra/metabolismo , Animales , Línea Celular Tumoral , Xenoinjertos , Humanos , Trasplante de Neoplasias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA