Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Methods Mol Biol ; 2791: 81-87, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532094

RESUMEN

This chapter presents the squash chromosome preparation technique for Fagopyrum esculentum and F. tataricum, using the root tips as the source of the material. Using an optimized version of this method, the chromosomes are free of cytoplasmic debris and are spread evenly on the glass slide. What comes of it is the possibility to make observations of the chromosome number and structure at the metaphase stage. This technique's modified version allows micronuclei analysis in interphase cells of buckwheats.


Asunto(s)
Fagopyrum , Fagopyrum/química , Fagopyrum/genética , Cromosomas
2.
Front Plant Sci ; 14: 1308830, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38239224

RESUMEN

Phaseolus vulgaris L. (common bean) is an essential source of proteins in the human diet worldwide. Bean breeding programs to increase genetic diversity based on induced mutagenesis have a long tradition in Bulgaria. Common bean varieties with high productivity, wide environmental adaptability, good nutritional properties, and improved disease resistance have been successfully developed. In this study, we aimed to investigate selected nuclear genome features, such as the genome size, the number and chromosomal distribution of 5S and 35S rDNA loci by using the fluorescence in situ hybridization (FISH), as well as the level of DNA damage in some local Bulgarian accessions and mutants of P. vulgaris. Flow cytometry analyses revealed no significant differences in genome size between analyzed lines except for one of the analyzed mutants, M19. The value of genome size 2C DNA is about 1.37 pg2C -1 for all lines, whereas it is 1.42 pg2C-1 for M19. The chromosome number remains the same (2n=22) for all analyzed lines. Results of FISH analyses showed that the number of 5S rDNA was stable among accessions and mutant lines (four loci), while the number of 35S rDNA loci was shown as highly polymorphic, varying between ten and sixteen, and displaying differences in the size and location of 35S rDNA loci between analyzed genotypes. The cell cycle profile was different for the analyzed genotypes. The results revealed that wide variation in genome organization and size as well as DNA damage characterizes the analyzed genetic resources of the common bean.

3.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35743241

RESUMEN

Many years have passed since micronuclei were first observed then accepted as an indicator of the effect of mutagens. However, the possible mechanisms of their formation and elimination from the cell are still not fully understood. Various stresses, including mutagens, can alter gene expression through changes in DNA methylation in plants. In this study we demonstrate for the first time DNA methylation in the foci of 5S and 35S rDNA sequences in individual Brachypodium distachyon micronuclei that are induced by mutagenic treatment with maleic acid hydrazide (MH). The impact of MH on global epigenetic modifications in nuclei and micronuclei has been studied in plants before; however, no in situ analyses of DNA methylation in specific DNA sequence sites are known. To address this problem, we used sequential immunodetection of 5-methylcytosine and fluorescence in situ hybridization (FISH) with 5S and 25S rDNA probes on the non-dividing cells of B. distachyon. Such investigations into the presence or absence of DNA methylation within specific DNA sequences are extremely important in plant mutagenesis in the light of altering gene expression.


Asunto(s)
Brachypodium , Hidrazida Maleica , Brachypodium/genética , Cromosomas de las Plantas , Metilación de ADN , ADN de Plantas/genética , ADN Ribosómico/genética , Hibridación Fluorescente in Situ , Hidrazida Maleica/farmacología , Mutágenos/toxicidad , Plantas/genética
4.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35163228

RESUMEN

Cytogenetic approaches play an essential role as a quick evaluation of the first genetic effects after mutagenic treatment. Although labor-intensive and time-consuming, they are essential for the analyses of cytotoxic and genotoxic effects in mutagenesis and environmental monitoring. Over the years, conventional cytogenetic analyses were a part of routine laboratory testing in plant genotoxicity. Among the methods that are used to study genotoxicity in plants, the micronucleus test particularly represents a significant force. Currently, cytogenetic techniques go beyond the simple detection of chromosome aberrations. The intensive development of molecular biology and the significantly improved microscopic visualization and evaluation methods constituted significant support to traditional cytogenetics. Over the past years, distinct approaches have allowed an understanding the mechanisms of formation, structure, and genetic activity of the micronuclei. Although there are many studies on this topic in humans and animals, knowledge in plants is significantly limited. This article provides a comprehensive overview of the current knowledge on micronuclei characteristics in plants. We pay particular attention to how the recent contemporary achievements have influenced the understanding of micronuclei in plant cells. Together with the current progress, we present the latest applications of the micronucleus test in mutagenesis and assess the state of the environment.


Asunto(s)
Análisis Citogenético/métodos , Citogenética/tendencias , Plantas/genética , Aberraciones Cromosómicas , Citogenética/métodos , Monitoreo del Ambiente/métodos , Micronúcleos con Defecto Cromosómico , Pruebas de Micronúcleos/métodos , Micronúcleo Germinal/genética , Micronúcleo Germinal/metabolismo , Mutagénesis , Pruebas de Mutagenicidad , Mutágenos/toxicidad
5.
Plants (Basel) ; 10(7)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34371611

RESUMEN

The chromatin structure is significantly influenced by some epigenetic modifications including DNA methylation. The nuclear organization plays an essential role in the cell response to external stresses including mutagens. We present an analysis of the correlation between epigenetic modifications and the instability of the Brachypodium distachyon genome, which are observed as micronuclei, following maleic hydrazide (MH) and nitroso-N-methylurea (MNU) treatments. We compared the level of DNA methylation in the control (untreated) and mutagen-treated B. distachyon nuclei. An immunostaining method using specific antibodies against modified DNA anti-5-methylcytosine was used for the evaluation of DNA methylation in a single nucleus and micronucleus. Interestingly, we showed an alteration of DNA methylation in cells after mutagenic treatments. The results indicate that DNA methylation might be involved in the response of the B. distachyon genome to mutagenic treatments. This demonstrates that analyses of the epigenetic modifications should be integrated into current plant genetic toxicology in order to explain the mechanisms of DNA damage and repair in plants.

6.
Int J Mol Sci ; 22(14)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34299166

RESUMEN

As cell wall proteins, the hydroxyproline-rich glycoproteins (HRGPs) take part in plant growth and various developmental processes. To fulfil their functions, HRGPs, extensins (EXTs) in particular, undergo the hydroxylation of proline by the prolyl-4-hydroxylases. The activity of these enzymes can be inhibited with 3,4-dehydro-L-proline (3,4-DHP), which enables its application to reveal the functions of the HRGPs. Thus, to study the involvement of HRGPs in the development of root hairs and roots, we treated seedlings of Brachypodium distachyon with 250 µM, 500 µM, and 750 µM of 3,4-DHP. The histological observations showed that the root epidermis cells and the cortex cells beneath them ruptured. The immunostaining experiments using the JIM20 antibody, which recognizes the EXT epitopes, demonstrated the higher abundance of this epitope in the control compared to the treated samples. The transmission electron microscopy analyses revealed morphological and ultrastructural features that are typical for the vacuolar-type of cell death. Using the TUNEL test (terminal deoxynucleotidyl transferase dUTP nick end labelling), we showed an increase in the number of nuclei with damaged DNA in the roots that had been treated with 3,4-DHP compared to the control. Finally, an analysis of two metacaspases' gene activity revealed an increase in their expression in the treated roots. Altogether, our results show that inhibiting the prolyl-4-hydroxylases with 3,4-DHP results in a vacuolar-type of cell death in roots, thereby highlighting the important role of HRGPs in root hair development and root growth.


Asunto(s)
Apoptosis , Brachypodium/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Prolina/farmacología , Brachypodium/metabolismo , Hidroxiprolina/química , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Prolina/análogos & derivados
7.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198069

RESUMEN

ATR, a DNA damage signaling kinase, is required for cell cycle checkpoint regulation and detecting DNA damage caused by genotoxic factors including Al3+ ions. We analyzed the function of the HvATR gene in response to chemical clastogen-maleic acid hydrazide (MH). For this purpose, the Al-tolerant barley TILLING mutant hvatr.g was used. We described the effects of MH on the nuclear genome of hvatr.g mutant and its WT parent cv. "Sebastian", showing that the genotoxic effect measured by TUNEL test and frequency of cells with micronuclei was much stronger in hvatr.g than in WT. MH caused a significant decrease in the mitotic activity of root cells in both genotypes, however this effect was significantly stronger in "Sebastian". The impact of MH on the roots cell cycle, analyzed using flow cytometry, showed no differences between the mutant and WT.


Asunto(s)
Aluminio/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN/efectos de los fármacos , Hordeum/efectos de los fármacos , Hidrazida Maleica/farmacología , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Daño del ADN/genética , Genoma de Planta/efectos de los fármacos , Genoma de Planta/genética , Genotipo , Hordeum/genética , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Mutágenos/farmacología , Mutación/efectos de los fármacos , Mutación/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética
8.
Front Plant Sci ; 11: 1146, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849704

RESUMEN

This study is an example of using 5-ethynyl-2'-deoxyuridine (EdU) for detecting sister chromatid exchanges (SCEs) at chromosomal level. Here we report a detailed protocol for differential labeling sister chromatids in barley (Hordeum vulgare, 2n = 14) cells that is based on the incorporation and simple detection of EdU. The perfect distinguishing of sister chromatids enabled an analysis of the effects of two model agents-maleic acid hydrazide (MH) and gamma rays-on the formation of SCEs. Using this method, we demonstrated the high sensitivity of barley cells to maleic hydrazide, which is expressed as an increased level of SCEs. A gamma ray induced only slightly more SCEs than in the control cells. The possible mechanisms of MH and gamma ray action in respect to distinguishing chromatids using EdU are discussed. Recommendation for SCEs visualization using EdU as an easy and quick method that can be successfully adapted to other plant species and potentially for human genotoxicity studies is presented.

9.
Front Plant Sci ; 10: 1299, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31695712

RESUMEN

Ataxia Telangiectasia and Rad-3-related protein (ATR) is a DNA damage signaling kinase required for the monitoring of DNA integrity. Together with ATM and SOG1, it is a key player in the transcriptional regulation of DNA damage response (DDR) genes in plants. In this study, we describe the role of ATR in the DDR pathway in barley and the function of the HvATR gene in response to DNA damages induced by aluminum toxicity. Aluminum is the third most abundant element in the Earth's crust. It becomes highly phytotoxic in acidic soils, which comprise more than 50% of arable lands worldwide. At low pH, Al is known to be a genotoxic agent causing DNA damage and cell cycle arrest. We present barley mutants, hvatr.g and hvatr.i, developed by TILLING strategy. The hvatr.g mutant carries a G6054A missense mutation in the ATR gene, leading to the substitution of a highly conserved amino acid in the protein (G1015S). The hvatr.g mutant showed the impaired DDR pathway. It accumulated DNA damages in the nuclei of root meristem cells when grown in control conditions. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) analysis revealed that 60% of mutant nuclei possessed DNA nicks and breaks, whereas in the wild type only 2% of the nuclei were TUNEL-positive. The high frequency of DNA damages did not lead to the inhibition of the cell cycle progression, but the mutant showed an increased number of cells in the G2/M phase. In response to treatments with different Al doses, hvatr.g showed a high level of tolerance. The retention of root growth, which is the most evident symptom of Al toxicity, was not observed in the mutant, as it was in its parent variety. Furthermore, Al treatment increased the level of DNA damages, but did not affect the mitotic activity and the cell cycle profile in the hvatr.g mutant. A similar phenotype was observed for the hvatr.i mutant, carrying another missense mutation leading to G903E substitution in the HvATR protein. Our results demonstrate that the impaired mechanism of DNA damage response may lead to aluminum tolerance. They shed a new light on the role of the ATR-dependent DDR pathway in an agronomically important species.

10.
Int J Mol Sci ; 20(11)2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31212692

RESUMEN

Micronuclei are biomarkers of genotoxic effects and chromosomal instability. They are formed when chromosome fragments or whole chromosomes fail to disjoin into daughter nuclei. We present qualitative and quantitative analyses of the involvement of specific chromosome regions of chromosomes Bd4 and Bd5 in the formation of micronuclei of Brachypodium distachyon root tip cells following maleic hydrazide (MH) treatment and X-radiation. This is visualised by cytomolecular approaches using bacterial artificial chromosome (BAC)-based multicolour fluorescence in situ hybridisation (mcFISH) in combination with 5S and 25S rDNA probes. The results showed that the long arm of submetacentric chromosome Bd4 forms micronuclei at twice the frequency of its short arm, suggesting that the former is more prone to double-strand breaks (DSBs). In contrast, no difference was observed in the frequency of micronuclei derived from the long and short arms of submetacentric chromosome Bd5. Interestingly, the proximal region of the short arm of Bd5 is more prone to DSBs than its distal part. This demonstrates that 5S rDNA and 35S rDNA loci are not "hot spots" for DNA breaks after the application of these mutagens.


Asunto(s)
Brachypodium/genética , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/efectos de la radiación , ADN de Plantas/genética , ADN de Plantas/efectos de la radiación , Rayos X , Cromosomas Artificiales Bacterianos
11.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31234423

RESUMEN

Aluminum (Al) is one of the most important crust elements causing reduced plant production in acidic soils. Barley (Hordeum vulgare L.) is considered to be one of the crops that is most sensitive to Al, and the root cell wall is the primary target of Al toxicity. In this study, we evaluate the possible involvement of specific pectic epitopes in the cells of barley roots in response to aluminum exposure. We targeted four different pectic epitopes recognized by LM5, LM6, LM19, and LM20 antibodies using an immunocytochemical approach. Since Al becomes available and toxic to plants in acidic soils, we performed our analyses on barley roots that had been grown in acidic conditions (pH 4.0) with and without Al and in control conditions (pH 6.0). Differences connected with the presence and distribution of the pectic epitopes between the control and Al-treated roots were observed. In the Al-treated roots, pectins with galactan sidechains were detected with a visually lower fluorescence intensity than in the control roots while pectins with arabinan sidechains were abundantly present. Furthermore, esterified homogalacturonans (HGs) were present with a visually higher fluorescence intensity compared to the control, while methyl-esterified HGs were present in a similar amount. Based on the presented results, it was concluded that methyl-esterified HG can be a marker for newly arising cell walls. Additionally, histological changes were detected in the roots grown under Al exposure. Among them, an increase in root diameter, shortening of root cap, and increase in the size of rhizodermal cells and divisions of exodermal and cortex cells were observed. The presented data extend upon the knowledge on the chemical composition of the cell wall of barley root cells under stress conditions. The response of cells to Al can be expressed by the specific distribution of pectins in the cell wall and, thus, enables the knowledge on Al toxicity to be extended by explaining the mechanism by which Al inhibits root elongation.


Asunto(s)
Aluminio/toxicidad , Hordeum/crecimiento & desarrollo , Pectinas/análisis , Raíces de Plantas/crecimiento & desarrollo , Contaminantes del Suelo/toxicidad , Pared Celular/química , Pared Celular/efectos de los fármacos , Pared Celular/ultraestructura , Hordeum/química , Hordeum/efectos de los fármacos , Hordeum/ultraestructura , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/ultraestructura
12.
Front Plant Sci ; 10: 761, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244877

RESUMEN

Meiosis is a process of essential importance for sexual reproduction, as it leads to production of gametes. The recombination event (crossing-over) generates genetic variation by introducing new combination of alleles. The first step of crossing-over is introduction of a targeted double-strand break (DSB) in DNA. DMC1 (Disrupted Meiotic cDNA1) is a recombinase that is specific only for cells undergoing meiosis and takes part in repair of such DSBs by searching and invading homologous sequences that are subsequently used as a template for the repair process. Although role of the DMC1 gene has been validated in Arabidopsis thaliana, a functional analysis of its homolog in barley, a crop species of significant importance in agriculture, has never been performed. Here, we describe the identification of barley mutants carrying substitutions in the HvDMC1 gene. We performed mutational screening using TILLING (Targeting Induced Local Lesions IN Genomes) strategy and the barley TILLING population, HorTILLUS, developed after double-treatment of spring barley cultivar 'Sebastian' with sodium azide and N-methyl-N-nitrosourea. One of the identified alleles, dmc1.c, was found independently in two different M2 plants. The G2571A mutation identified in this allele leads to a substitution of the highly conserved amino acid (arginine-183 to lysine) in the DMC1 protein sequence. Two mutant lines carrying the same dmc1.c allele show similar disturbances during meiosis. The chromosomal aberrations included anaphase bridges and chromosome fragments in anaphase/telophase I and anaphase/telophase II, as well as micronuclei in tetrads. Moreover, atypical tetrads containing three or five cells were observed. A highly increased frequency of all chromosome aberrations during meiosis have been observed in the dmc1.c mutants compared to parental variety. The results indicated that DMC1 is required for the DSB repair, crossing-over and proper chromosome disjunction during meiosis in barley.

13.
Ann Bot ; 122(7): 1161-1171, 2018 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-29982446

RESUMEN

Background and Aims: Brachypodium distachyon (Brachypodium) is a model species for temperate cereals and other economically important grasses. Its favourable cytogenetic features and advanced molecular infrastructure make it a good model for understanding the mechanisms of instability of plant genomes after mutagenic treatment. The aim of this study was to qualitatively and quantitatively assess the composition and origin of micronuclei arising from genomic fracture, and to detect possible 'hot spots' for mutagen-induced DNA breaks. Methods: Seeds of Brachypodium were treated with maleic hydrazide (MH) or X-rays. The structure of mutagen-induced micronuclei was analysed in root-tip meristematic cells using multicolour fluorescence in situ hybridization (mcFISH) with various repetitive (5S rDNA, 25S rDNA, telomeric, centromeric) and low-repeat [small and large pools of bacterial artificial chromosome (BAC) clones specific for chromosome Bd1] DNA sequences. Key Results: The majority of micronuclei derive from large, acentric fragments. X-rays caused more interstitial DNA breaks than MH. Double-strand breaks rarely occurred in distal chromosome regions. Bd1 contributed to the formation of more mutagen-induced micronuclei than expected from random chromosome involvement. Conclusions: mcFISH with chromosome-specific BAC clones offers insight into micronuclei composition, in so far as it allows their origin and formation to be determined more specifically. A reliable assay for micronuclei composition is crucial for the development of modern genotoxicity tests using plant cells. The combination of mutagenic treatments and well-developed cytomolecular resources in Brachypodium make this model species very promising for plant mutagenesis research.


Asunto(s)
Brachypodium/genética , Cromosomas de las Plantas/efectos de los fármacos , Micronúcleos con Defecto Cromosómico , Mutágenos/efectos adversos , Brachypodium/efectos de los fármacos , Pintura Cromosómica , Cromosomas de las Plantas/genética , Roturas del ADN , Hibridación Fluorescente in Situ , Hidrazida Maleica/efectos adversos , Rayos X/efectos adversos
14.
Int J Mol Sci ; 19(6)2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29921802

RESUMEN

Morphological and histological observations revealed that, at a concentration of 50 µM, 5-azacitidine (5-azaC) totally inhibited the induction of embryogenic masses (EM), while the cultivation of explants (zygotic embryos; ZEs) in the presence of 5 µM of 5-azaC led to the formation of a callus with EM in 10% of the cases. Transmission electron microscopy (TEM) analyzes revealed the presence of the morphological and ultrastructural features that are typical for the vacuolar type of cell death in the callus cells that were treated. A TUNEL assay confirmed the presence of DNA double-strand breaks for the callus cells that had been treated with both 5 and 50 µM 5-azaC concentrations. Analysis of the gene expression of selected cell death markers demonstrated a reduced expression of metacaspase, protein executer 1 (EX1), and thioredoxin (TRX) in the callus cells that had been treated compared to the control culture. The strongest increase in the gene activity was characteristic for glutathione S-transferase (GST). Our studies also included an analysis of the distribution of some arabinogalactan proteins (AGPs) and extensin epitopes, which can be used as markers of cells that are undergoing death in a Brachypodium distachyon tissue culture.


Asunto(s)
Azacitidina/toxicidad , Brachypodium/efectos de los fármacos , Mutágenos/toxicidad , Brachypodium/genética , Caspasas/metabolismo , Muerte Celular , Roturas del ADN de Doble Cadena , Galactanos/metabolismo , Glutatión Transferasa/metabolismo , Proteínas de Plantas/metabolismo , Tiorredoxinas/metabolismo
15.
Sci Total Environ ; 635: 947-955, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29710616

RESUMEN

Despite the fact that the demand for graphene and its derivatives in commercial applications is still growing, many aspects of its toxicity and biocompatibility are still poorly understood. Graphene oxide, which is released into the environment (air, soil and water) as so-called nanowaste or nanopollution, is able to penetrate living organisms. It is highly probable that, due to its specific nature, it can migrate along food chains thereby causing negative consequences. Our previous studies reported that short-term exposure to graphene oxide may increase the antioxidative defense parameters, level of DNA damage, which results in numerous degenerative changes in the gut and gonads. The presented research focuses on reproductive dysfunction and cellular changes in Acheta domesticus after exposure to GO nanoparticles in food (concentrations of 20 and 200 µg·g-1 of food) throughout their entire life cycle. The results showed that long-term exposure to GO caused a significant decrease in the reproductive capabilities of the animals. Moreover, the next generation of A. domesticus had a lower cell vitality compared to their parental generation. It is possible that graphene oxide can cause multigenerational harmful effects.


Asunto(s)
Grafito/toxicidad , Gryllidae/efectos de los fármacos , Nanopartículas/toxicidad , Óxidos/toxicidad , Animales , Exposición Dietética , Fertilidad/efectos de los fármacos , Pruebas de Toxicidad Crónica
16.
Int J Mol Sci ; 19(4)2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29614057

RESUMEN

Replication errors that are caused by mutagens are critical for living cells. The aim of the study was to analyze the distribution of a DNA replication pattern on chromosomes of the H. vulgare 'Start' variety using pulse 5-ethynyl-2'-deoxyuridine (EdU) labeling, as well as its relationship to the DNA damage that is induced by mutagenic treatment with maleic hydrazide (MH) and γ ray. To the best of our knowledge, this is the first example of a study of the effects of mutagens on the DNA replication pattern in chromosomes, as well as the first to use EdU labeling for these purposes. The duration of the cell cycle of the Hordeum vulgare 'Start' variety was estimated for the first time, as well as the influence of MH and γ ray on it. The distribution of the signals of DNA replication along the chromosomes revealed relationships between DNA replication, the chromatin structure, and DNA damage. MH has a stronger impact on replication than γ ray. Application of EdU seems to be promising for precise analyses of cell cycle disturbances in the future, especially in plant species with small genomes.


Asunto(s)
Cromosomas de las Plantas/genética , Replicación del ADN/efectos de los fármacos , Hordeum/genética , Mutágenos/toxicidad , Cromosomas de las Plantas/efectos de los fármacos , Cromosomas de las Plantas/efectos de la radiación , Replicación del ADN/efectos de la radiación , Desoxiuridina/análogos & derivados , Desoxiuridina/toxicidad , Rayos gamma/efectos adversos , Hordeum/efectos de los fármacos , Hordeum/efectos de la radiación
17.
PLoS One ; 13(2): e0193156, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29466444

RESUMEN

Barley is one of the cereals that are most sensitive to aluminum (Al). Al in acid soils limits barley growth and development and, as a result, its productivity. The inhibition of root growth is a widely accepted indicator of Al stress. Al toxicity is affected by many factors including the culture medium, pH, Al concentration and the duration of the treatment. However, Al can act differently in different species and still Al toxicity in barley deserves study. Since the mechanism of Al toxicity is discussed we cytogenetically describe the effects of different doses of bioavailable Al on the barley nuclear genome-mitotic activity, cell cycle profile and DNA integrity. At the same time, we tested an established deep-water culture (DWC) hydroponics system and analyzed the effects of Al on the root system parameters using WinRHIZO software. We demonstrated the cytotoxic and genotoxic effect of Al in barley root cells. We showed that Al treatment significantly reduced the mitotic activity of the root tip cells and it also induced micronuclei and damaged nuclei. The DNA-damaging effect of Al was observed using the TUNEL test. We define the inhibitory influence of Al on DNA replication in barley. Analysis with the labelling and detection of 5-ethynyl-2'-deoxyuridin (EdU) showed that the treatment with Al significantly decreased the frequency of S phase cells. We also demonstrated that Al exposure led to changes in the cell cycle profile of barley root tips. The delay of cell divisions observed as increased frequency of cells in G2/M phase after Al treatment was reported using flow cytometry.


Asunto(s)
Aluminio/toxicidad , División Celular/efectos de los fármacos , Daño del ADN , ADN de Plantas/metabolismo , Fase G2/efectos de los fármacos , Genoma de Planta/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Hordeum/metabolismo , Raíces de Plantas/metabolismo , ADN de Plantas/genética , Hordeum/genética , Raíces de Plantas/genética
18.
PLoS One ; 12(3): e0173537, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28278222

RESUMEN

Long-term cultivated Fagopyrum tataricum (L.) Gaertn. (Tartary buckwheat) morphogenic and non-morphogenic callus lines are interesting systems for gaining a better understanding of the mechanisms that are responsible for the genetic stability and instability of a plant tissue culture. In this work, we used histological sections and transmission electron microscopy to identify and describe the morphology of the nuclei of all of the analysed callus lines. We demonstrated that the embryogenic callus cells had prominent round nuclei that did not contain heterochromatin clumps in contrast to the non-morphogenic callus lines, in which we found nuclei that had multiple lobes. Flow cytometry analysis revealed significant differences in the relative DNA content between the analysed calli. All of the analysed morphogenic callus lines had peaks from 2C to 8C as compared to the non-morphogenic callus lines, whose peaks did not reflect any regular DNA content and exceeded 8C and 16C for the line 6p1 and 16C and 32C for the callus line 10p2A. The results showed that non-morphogenic calli are of an aneuploid nature. The TUNEL test enabled us to visualise the nuclei that had DNA fragmentation in both the morphogenic and non-morphogenic lines. We revealed significantly higher frequencies of positively labelled nuclei in the non-morphogenic lines than in the morphogenic lines. In the case of the morphogenic lines, the highest observed frequency of TUNEL-positive nuclei was 7.7% for lines 2-3. In the non-morphogenic calli, the highest level of DNA damage (68.5%) was revealed in line 6p1. These results clearly indicate greater genome stability in the morphogenic lines.


Asunto(s)
Núcleo Celular/genética , Fagopyrum/crecimiento & desarrollo , Fagopyrum/genética , Inestabilidad Genómica , Morfogénesis/genética , Proteínas de Plantas/genética , Técnicas de Cultivo de Célula
19.
PLoS One ; 12(1): e0170618, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28118403

RESUMEN

Brachypodium distachyon (Brachypodium) is now intensively utilized as a model grass species in various biological studies. Its favorable cytological features create a unique foundation for a convenient system in mutagenesis, thereby potentially enabling the 'hot spots' and 'cold spots' of DNA damage in its genome to be analyzed. The aim of this study was to analyze the involvement of 5S rDNA, 25S rDNA, the Arabidopsis-type (TTTAGGG)n telomeric sequence and the Brachypodium-originated centromeric BAC clone CB33J12 in the micronuclei formation in Brachypodium root tip cells that were subjected to the chemical clastogenic agent maleic hydrazide (MH). To the best of our knowledge, this is the first use of a multicolor fluorescence in situ hybridization (mFISH) with four different DNA probes being used simultaneously to study plant mutagenesis. A quantitative analysis allowed ten types of micronuclei, which were characterized by the presence or absence of specific FISH signal(s), to be distinguished, thus enabling some specific rules governing the composition of the MH-induced micronuclei with the majority of them originating from the terminal regions of chromosomes, to be identified. The application of rDNA sequences as probes showed that 5S rDNA-bearing chromosomes are involved in micronuclei formation more frequently than the 25S rDNA-bearing chromosomes. These findings demonstrate the promising potential of Brachypodium to be a useful model organism to analyze the effects of various genotoxic agents on the plant nuclear genome stability, especially when the complex FISH-based and chromosome-specific approaches such as chromosome barcoding and chromosome painting will be applied in future studies.


Asunto(s)
Brachypodium/genética , Pintura Cromosómica/métodos , Cromosomas de las Plantas/efectos de los fármacos , Hidrazida Maleica/farmacología , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos/métodos , Mutagénesis , Mutágenos/farmacología , Brachypodium/efectos de los fármacos , Centrómero/efectos de los fármacos , Centrómero/ultraestructura , Cromosomas Artificiales Bacterianos/efectos de los fármacos , Cromosomas de las Plantas/ultraestructura , Sondas de ADN , ADN Ribosómico/genética , Genoma de Planta , Germinación , Interfase , Mitosis , Raíces de Plantas , ARN de Planta/biosíntesis , ARN de Planta/genética , Semillas/efectos de los fármacos , Telómero/efectos de los fármacos , Telómero/ultraestructura
20.
Artículo en Inglés | MEDLINE | ID: mdl-27908384

RESUMEN

The temporal and spatial properties of DNA replication in plants related to DNA damage and mutagenesis is poorly understood. Experiments were carried out to explore the relationships between DNA replication, chromatin structure and DNA damage in nuclei from barley root tips. We quantitavely analysed the topological organisation of replication foci using pulse EdU labelling during the S phase and its relationship with the DNA damage induced by mutagenic treatment with maleic hydrazide (MH), nitroso-N-methyl-urea (MNU) and gamma ray. Treatment with mutagens did not change the characteristic S-phase patterns in the nuclei; however, the frequencies of the S-phase-labelled cells after treatment differed from those observed in the control cells. The analyses of DNA replication in barley nuclei were extended to the micronuclei induced by mutagens. Replication in the chromatin of the micronuclei was rare. The results of simultanous TUNEL reaction to identify cells with DNA strand breaks and the labelling of the S-phase cells with EdU revealed the possibility of DNA replication occurring in damaged nuclei. For the first time, the intensity of EdU fluorescence to study the rate of DNA replication was analysed.


Asunto(s)
Daño del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , ADN de Plantas/efectos de los fármacos , Hordeum/efectos de los fármacos , Hordeum/genética , Mutagénesis/efectos de los fármacos , Mutágenos/toxicidad , Núcleo Celular/efectos de los fármacos , Rayos gamma , Etiquetado Corte-Fin in Situ/métodos , Hidrazida Maleica/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...