Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 2973-2992, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544951

RESUMEN

Background: For maintenance therapy in type 2 diabetes, glucagon-like peptide-1 agonist (GLP-1A), which exhibits low cardiovascular risk and high efficacy, is a promising peptide therapeutic. However, developing an oral GLP-1A presents challenges due to the analog's poor cellular permeability and gastrointestinal (GI) stability. Methods: To mitigate such limitations, an oral nanoformulation of liraglutide (LG) was designed and achieved by combining LG with bile acid derivatives using the nanoprecipitation method. This strategy allowed the bile acid moieties to localize at the nanoparticle surface, enhancing the binding affinity for apical sodium-dependent bile acid transporter (ASBT) and improving GI stability. The in vitro characteristics, cellular permeability, and absorption mechanisms of the LG nanoformulation (LG/TD-NF) were thoroughly investigated. Furthermore, the in vivo oral absorption in rats and the glucose-lowering effects in a diabetic (db/db) mouse model were evaluated. Results: The LG/TD-NF produced neutral nanoparticles with a diameter of 58.7 ± 4.3 nm and a zeta potential of 4.9 ± 0.4 mV. Notably, when exposed to simulated gastric fluid, 65.7 ± 3.6% of the LG/TD-NF remained stable over 120 min, while free LG was fully degraded. Relative to unformulated LG, the Caco-2 cellular permeability of the nanoformulation improved, measuring 10.9 ± 2.1 (× 10-6 cm/s). The absorption mechanism prominently featured endocytosis simultaneously mediated by both ASBT and epidermal growth factor receptor (EGFR). The oral bioavailability of the LG/TD-NF was determined to be 3.62% at a dosage of 10 mg/kg, which is 45.3 times greater than that of free LG. In a diabetes model, LG/TD-NF at 10 mg/kg/day exhibited commendable glucose sensitivity and reduced HbA1c levels by 4.13% within 28 days, similar to that of subcutaneously administered LG at a dosage of 0.1 mg/kg/day. Conclusion: The oral LG/TD-NF promotes ASBT/EGFR-mediated transcytosis and assures cellular permeability within the GI tract. This method holds promise for the development of oral GLP-1A peptides as an alternative to injections, potentially enhancing patient adherence to maintenance therapy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Liraglutida , Humanos , Ratones , Ratas , Animales , Liraglutida/farmacología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Células CACO-2 , Péptido 1 Similar al Glucagón/uso terapéutico , Tracto Gastrointestinal/metabolismo , Ácidos y Sales Biliares , Glucosa , Receptores ErbB , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
2.
Biomaterials ; 308: 122539, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552366

RESUMEN

Catechol-based biomaterials demonstrate biocompatibility, making them suitable for a wide range of therapeutic applications when integrated into various molecular frameworks. However, the development of orally available catechol-based biomaterials has been hindered by significant pH variations and complex interactions in the gastrointestinal (GI) tract. In this study, we introduce a novel catechol-modified bile acid (CMBA), which is synthesized by anchoring the FDA-approved drug, ursodeoxycholic acid to the neurotransmitter dopamine. This modification could form a new apical sodium-dependent bile acid transporter (ASBT) inhibitor (ASBTi) due to the bile acid moiety. The computational analysis using the TRAnsient Pockets in Proteins (TRAPP) module, coupled with MD simulations, revealed that CMBA exhibits a strong binding affinity at residues 51-55 of ASBT with a low inhibitory constant (Ki) value. Notably, in slightly alkaline biological conditions, CMBA molecules self-assemble into carrier-free nanoparticles with an average size of 240.2 ± 44.2 nm, while maintaining their ability to bind with ASBT. When administered orally, CMBA accumulates in the ileum and liver over 24 h, exhibiting significant therapeutic effects on bile acid (BA) metabolism in a high-fat diet (HFD)-fed mouse model. This study underscores the therapeutic potential of the newly developed catechol-based, pH-responsive ASBT-inhibiting nanoparticles presenting a promising avenue for advancing therapy.


Asunto(s)
Ácidos y Sales Biliares , Catecoles , Nanopartículas , Transportadores de Anión Orgánico Sodio-Dependiente , Animales , Catecoles/química , Catecoles/metabolismo , Concentración de Iones de Hidrógeno , Ácidos y Sales Biliares/metabolismo , Ácidos y Sales Biliares/química , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Nanopartículas/química , Ratones , Humanos , Simportadores/metabolismo , Masculino , Ratones Endogámicos C57BL
3.
Biomater Res ; 27(1): 83, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660070

RESUMEN

BACKGROUND: Despite the effectiveness of glucagon-like peptide-1 agonist (GLP-1A) in the treatment of diabetes, its large molecular weight and high hydrophilicity result in poor cellular permeability, thus limiting its oral bioavailability. To address this, we developed a chimeric GLP-1A that targets transporter-mediated endocytosis to enhance cellular permeability to GLP-1A by utilizing the transporters available in the intestine, particularly the apical sodium-dependent bile acid transporter (ASBT). METHODS: In silico molecular docking and molecular dynamics simulations were used to investigate the binding interactions of mono-, bis-, and tetra-deoxycholic acid (DOCA) (monoDOCA, bisDOCA, and tetraDOCA) with ASBT. After synthesizing the chimeric GLP-1A-conjugated oligomeric DOCAs (mD-G1A, bD-G1A, and tD-G1A) using a maleimide reaction, in vitro cellular permeability and insulinotropic effects were assessed. Furthermore, in vivo oral absorption in rats and hypoglycemic effect on diabetic db/db mice model were evaluated. RESULTS: In silico results showed that tetraDOCA had the lowest interaction energy, indicating high binding affinity to ASBT. Insulinotropic effects of GLP-1A-conjugated oligomeric DOCAs were not different from those of GLP-1A-Cys or exenatide. Moreover, bD-G1A and tD-G1A exhibited improved in vitro Caco-2 cellular permeability and showed higher in vivo bioavailability (7.58% and 8.63%) after oral administration. Regarding hypoglycemic effects on db/db mice, tD-G1A (50 µg/kg) lowered the glucose level more than bD-G1A (50 µg/kg) compared with the control (35.5% vs. 26.4%). CONCLUSION: GLP-1A was conjugated with oligomeric DOCAs, and the resulting chimeric compound showed the potential not only for glucagon-like peptide-1 receptor agonist activity but also for oral delivery. These findings suggest that oligomeric DOCAs can be used as effective carriers for oral delivery of GLP-1A, offering a promising solution for enhancing its oral bioavailability and improving diabetes treatment.

4.
Biomater Sci ; 11(18): 6177-6192, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37504889

RESUMEN

Radiation therapy (RT) is a mainstream clinical approach in cancer treatment. However, the therapeutic efficacy of RT is greatly hindered by the presence of excessive hydrogen peroxide (H2O2) in the hypoxic region of the solid tumor, thus leading to tumor recurrence and metastasis. Herein, a thioketal-linked amphiphilic nano-assembly (MTS) loaded with hydrophobic manganese oxide (HMO) nanoparticles (MTS@HMO) is examined as a promising multi-purpose reactive oxygen species (ROS)-catalytic nanozyme for transforming an RT-resistant hypoxic tumor microenvironment (TME) into an RT-susceptible one by scavenging ROS in the hypoxic core of the solid tumor. After intravenous injection, the MTS@HMO nano-assembly was able to sense and be degraded by the abundant ROS in the hypoxic TME, thereby releasing HMO particles for subsequent scavenging of H2O2. The oxygen generated during peroxide scavenging then relieved the hypoxic TME, thereby resulting in an increased sensitivity of the hypoxic tumor tissue towards RT. Moreover, the in situ hypoxic status was monitored via the T1-enhanced magnetic resonance (MR) imaging of the Mn2+ ions generated by the ROS-mediated degradation of HMO. The in vitro results demonstrated a significant H2O2 elimination and enhanced oxygen generation after the treatment of the MTS@HMO nano-assembly with tumor cells under hypoxic conditions, compared to the control MTS group. In addition, the combination of RT and pre-treatment with MTS@HMO nano-assembly significantly amplified the permanent DNA strand breaks in tumor cells compared to the control RT group. More importantly, the in vivo results proved that the systemic injection of the MTS@HMO nano-assembly prior to RT irradiation enhanced the RT-mediated tumor suppression and down-regulated the hypoxic marker of HIF-1α in the solid tumor compared to the control RT group. Overall, the present work demonstrates the great potential of the versatile ROS-catalytic hypoxia modulating strategy using the MTS@HMO nano-assembly to enhance the RT-induced antitumor efficacy in hypoxic solid tumors.


Asunto(s)
Neoplasias del Colon , Fotoquimioterapia , Humanos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/química , Línea Celular Tumoral , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Hipoxia/patología , Oxígeno/metabolismo , Neoplasias del Colon/radioterapia , Neoplasias del Colon/tratamiento farmacológico , Microambiente Tumoral , Fotoquimioterapia/métodos
5.
Drug Deliv ; 29(1): 3397-3413, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36419245

RESUMEN

Atorvastatin (ATV) has attracted considerable attention as a potential therapeutic agent for cancer because it inhibits cancer cell proliferation by suppressing the mevalonate pathway. However, because of its low oral absorption, high doses of ATV are required for chemotherapeutic applications. In this study, we constructed ATV-loaded nanoemulsions (ATV-NEs) containing multivalent intestinal transporter-targeting lipids to improve the oral bioavailability of ATV. ATV-NEs were prepared via oil-in-water emulsification for transporter-targeted delivery, and contained the following anchors: an ionic complex of deoxycholic acid (DOCA) with the cationic lipid 1,2-dioleyl-3-trimethylammonium propane (DOTAP) (DOCA-DOTAP), a biotin-conjugated lipid (Biotinyl PE), and d-alpha-tocopherol polyethylene glycol succinate (TPGS) to allow bile acid- and multivitamin transporter-mediated permeation of ATV without P-glycoprotein (P-gp)-mediated efflux. The optimized formulation (ATV-NE#6) had 1,091% higher oral bioavailability than free ATV. Finally, treatment of 4T1 cell-bearing mice with oral ATV-NE#6 (equivalent to 40 mg/kg ATV) significantly suppressed tumor growth; the maximum tumor growth reduction was 2.44-fold that of the control group. The results thus suggest that ATV-NEs allow for effective oral chemotherapy by enhancing the oral bioavailability of ATV.


Asunto(s)
Acetato de Desoxicorticosterona , Animales , Ratones , Atorvastatina , Intestinos , Proteínas de Transporte de Membrana , Metabolismo de los Lípidos
6.
Biomaterials ; 286: 121584, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35617783

RESUMEN

In conventional chemotherapy, maximum tolerated dose approach is considered as a first-line medication for cancer treatment in clinics. In contrast to the conventional chemotherapy which has heavy tumor burdens arising from high dose treatment, metronomic chemotherapy (MCT) engages relatively low dose without drug-free breaks, and is recognized as a promising strategy for a long-term management of the disease. Although doxorubicin (DOX), an anthracycline anti-cancer drug, showed a potential of maintenance effect in vitro, further study on in vivo-relevant concentration to achieve tumor suppression with no toxicity is required to apply the MCT in clinicals. Therefore, the objective of this study was to identify an optimal MCT regimen of DOX by determining concentration-response relationships of tumor suppression (pharmacodynamic; PD) and cardiac toxicity (toxicodynamic; TD). Utilizing an oral DOX formulation complexed with deoxycholic acid (DOX/DOCA complex) which has enhanced bioavailability, physiologically-based pharmacokinetic (PBPK) model was linked to TD and PD models to generate drug profiles from the combined PK, TD, and PD parameters. The integrated model was validated for various scenarios of administration route, formulation, dose, and frequency. The established mathematical model facilitated calculations of adequate in vivo-relevant dosages and intervals, suggesting the optimum oral metronomic regimen of DOX. It is expected to serve as a useful guideline for the design and evaluation of oral DOX formulations in future preclinical/clinical studies.


Asunto(s)
Doxorrubicina , Neoplasias , Administración Metronómica , Antibióticos Antineoplásicos , Doxorrubicina/uso terapéutico , Humanos , Modelos Teóricos , Neoplasias/tratamiento farmacológico
7.
Biomaterials ; 281: 121334, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34974206

RESUMEN

In this study, we investigated the immune-modulating effects of a novel metronomic chemotherapy (MCT) featuring combined oral oxaliplatin (OXA) and pemetrexed (PMX) for colon cancer. OXA and PMX were ionically complexed with lysine derivative of deoxycholic acid (DCK), and incorporated into nanoemulsions or colloidal dispersions, yielding OXA/DCK-NE and PMX/DCK-OP, respectively, to improve their oral bioavailabilities. MCT was not associated with significant lymphotoxicity whereas the maximum tolerated dose (MTD) afforded systemic immunosuppression. MCT was associated with more immunogenic cell death and tumor cell MHC-class I expression than was MTD. MCT improved the tumor antigen presentation of dendritic cells and increased the number of functional T cells in the tumor. MCT also helped to enhance antigen-specific memory responses both locally and systemically. By combining MCT with anti-programmed cell death protein-1 (αPD-1) therapy, the tumor volume was suppressed by 97.85 ± 84.88% compared to the control, resulting in a 95% complete response rate. Upon re-challenge, all tumor-free mice rejected secondary tumors, indicating the induction of a tumor specific memory response. Thus, MCT using an OXA and PMX combination, together with αPD-1, successfully treated colon cancer by activating both innate and adaptive immune cells and elicited tumor-specific long-term immune memory while avoiding toxicity caused by MTD treatment.


Asunto(s)
Neoplasias del Colon , Administración Oral , Animales , Disponibilidad Biológica , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Inmunoterapia , Ratones , Oxaliplatino/uso terapéutico
8.
J Immunother Cancer ; 9(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34341129

RESUMEN

PURPOSE: Here, this study verifies that cancer-associated thrombosis (CAT) accelerates hypoxia, which is detrimental to the tumor immune microenvironment by limiting tumor perfusion. Therefore, we designed an oral anticoagulant therapy to improve the immunosuppressive tumor microenvironment and potentiate the efficacy of immunotherapy by alleviating tumor hypoxia. EXPERIMENTAL DESIGN: A novel oral anticoagulant (STP3725) was developed to consistently prevent CAT formation. Tumor perfusion and hypoxia were analyzed with or without treating STP3725 in wild-type and P selectin knockout mice. Immunosuppressive cytokines and cells were analyzed to evaluate the alteration of the tumor microenvironment. Effector lymphocyte infiltration in tumor tissue was assessed by congenic CD45.1 mouse lymphocyte transfer model with or without anticoagulant therapy. Finally, various tumor models including K-Ras mutant spontaneous cancer model were employed to validate the role of the anticoagulation therapy in enhancing the efficacy of immunotherapy. RESULTS: CAT was demonstrated to be one of the perfusion barriers, which fosters immunosuppressive microenvironment by accelerating tumor hypoxia. Consistent treatment of oral anticoagulation therapy was proved to promote tumor immunity by alleviating hypoxia. Furthermore, this resulted in decrease of both hypoxia-related immunosuppressive cytokines and myeloid-derived suppressor cells while improving the spatial distribution of effector lymphocytes and their activity. The anticancer efficacy of αPD-1 antibody was potentiated by co-treatment with STP3725, also confirmed in various tumor models including the K-Ras mutant mouse model, which is highly thrombotic. CONCLUSIONS: Collectively, these findings establish a rationale for a new and translational combination strategy of oral anticoagulation therapy with immunotherapy, especially for treating highly thrombotic cancers. The combination therapy of anticoagulants with immunotherapies can lead to substantial improvements of current approaches in the clinic.


Asunto(s)
Anticoagulantes/uso terapéutico , Hipoxia de la Célula/efectos de los fármacos , Inmunomodulación/efectos de los fármacos , Inmunoterapia/métodos , Animales , Anticoagulantes/farmacología , Humanos , Ratones , Microambiente Tumoral
9.
J Control Release ; 336: 181-191, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34144107

RESUMEN

The selective cytotoxicity of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) to cancer cells but not to normal cells makes it an attractive candidate for cancer therapeutics. However, the disadvantages of TRAIL such as physicochemical instability and short half-life limit its further clinical applications. In this study, TRAIL was encapsulated into a novel anti-angiogenic nanocomplex for both improved drug distribution at the tumor site and enhanced anti-tumor efficacy. A nanocomplex was prepared firstly by entrapping TRAIL into PEG-low molecular weight heparin-taurocholate conjugate (LHT7), which is previously known as a potent angiogenesis inhibitor. Then, protamine was added to make a stable form of nanocomplex (PEG-LHT7/TRAIL/Protamine) by exerting electrostatic interactions. We found that entrapping TRAIL into the nanocomplex significantly improved both pharmacokinetic properties and tumor accumulation rate without affecting the tumor selective cytotoxicity of TRAIL. Furthermore, the anti-tumor efficacy of nanocomplex was highly augmented (73.77±4.86%) compared to treating with only TRAIL (18.49 ± 19.75%), PEG-LHT7/Protamine (47.84 ± 14.20%) and co-injection of TRAIL and PEG-LHT7/Protamine (56.26 ± 9.98%). Histological analysis revealed that treatment with the nanocomplex showed both anti-angiogenic efficacy and homogenously induced cancer cell apoptosis, which suggests that accumulated TRAIL and LHT7 in tumor tissue exerted their anti-tumor effects synergistically. Based on this study, we suggest that PEG-LHT7/Protamine complex is an effective nanocarrier of TRAIL for enhancing drug distribution as well as improving anti-tumor efficacy by exploiting the synergistic mechanism of anti-angiogenesis.


Asunto(s)
Inhibidores de la Angiogénesis , Ácido Taurocólico , Apoptosis , Línea Celular Tumoral , Heparina , Polietilenglicoles , Protaminas , Ligando Inductor de Apoptosis Relacionado con TNF
10.
Int J Nanomedicine ; 15: 7719-7743, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33116497

RESUMEN

OBJECTIVE: The anticancer efficacy of orally administered chemotherapeutics is often constrained by low intestinal membrane permeability and oral bioavailability. In this context, we designed a solid oral formulation of oxaliplatin (OP), a third-generation cisplatin analog, to improve oral bioavailability and investigate its application in metronomic chemotherapy. METHODS: An ion-pairing complex of OP with a permeation enhancer, N α-deoxycholyl-l-lysyl-methylester (DLM), was successfully prepared and then mixed with dispersing agents (including poloxamer 188 and Labrasol) to form the solid, amorphous oral formulation OP/DLM (OP/DLM-SF; hereafter, ODSF). RESULTS: The optimized powder formulation was sized in the nanoscale range (133±1.47 nm). The effective permeability of OP increased by 12.4-fold after ionic complex formation with DLM and was further increased by 24.0-fold after incorporation into ODSF. ODSF exhibited respective increases of 128% and 1010% in apparent permeability across a Caco-2 monolayer, compared to OP/DLM and OP. Furthermore, inhibition of bile acid transporters by actinomycin D and caveola-mediated uptake by brefeldin in Caco-2 cell monolayers reduced the apparent permeability values of ODSF by 58.4% and 51.1%, respectively, suggesting predominant roles for bile acid transporters and caveola-mediated transport in intestinal absorption of ODSF. In addition, macropinocytosis and paracellular and transcellular passive transport significantly influenced the intestinal permeation of ODSF. The oral bioavailabilities of ODSF in rats and monkeys were 68.2% and 277% higher, respectively, than the oral bioavailability of free OP. In vivo analyses of anticancer efficacy in CT26 and HCT116 cell-bearing mice treated with ODSF demonstrated significant suppression of tumor growth, with respective maximal tumor volume reductions of 7.77-fold and 4.07-fold, compared to controls. CONCLUSION: ODSF exhibits therapeutic potential, constituting an effective delivery system that increases oral bioavailability, with applications to metronomic chemotherapy.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Portadores de Fármacos/administración & dosificación , Oxaliplatino/administración & dosificación , Oxaliplatino/farmacocinética , Administración Metronómica , Administración Oral , Animales , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Células CACO-2 , Permeabilidad de la Membrana Celular/efectos de los fármacos , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Femenino , Glicéridos/química , Humanos , Absorción Intestinal/efectos de los fármacos , Lisina/análogos & derivados , Lisina/química , Macaca fascicularis , Masculino , Ratones Endogámicos BALB C , Poloxámero/química , Ratas Sprague-Dawley
11.
Drug Deliv ; 27(1): 1501-1513, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33107339

RESUMEN

In this study, a system for oral delivery of etoposide (ETP) was designed to avoid the problems associated with low and variable bioavailability of a commercially available ETP emulsion comprised of polyethylene glycol, glycerol, and citric acid anhydrous. ETP was complexed with low-molecular-weight methylcellulose (ETP/LMC) and loaded into a water-in-oil-in-water multiple nanoemulsion to formulate an ETP/LMC-nanoemulsion (ELNE). To further enhance the oral bioavailability, an ionic complex formed by anionic lipid 1,2-didecanoyl-sn-glycero-3-phosphate (sodium salt) and cationic N α-deoxycholyl-l-lysyl-methylester was incorporated into ELNE, yielding ELNE#7. As expected, ELNE#7 showed 4.07- and 2.25-fold increases in artificial membrane and Caco-2/HT29-MTX-E12 permeability (Papp ), respectively, resulting in 224% greater oral bioavailability compared with the commercially available ETP emulsion. In contrast, inhibition of clathrin- and caveola-mediated endocytosis, macropinocytosis, and bile acid transporters by chlorpromazine, genistein, amiloride, and actinomycin D in Caco-2/HT-29-MTX-E12 monolayers reduced the Papp by 45.0%, 20.5%, 28.8%, and 31.1%, respectively. These findings suggest that these routes play important roles in enhancing the oral absorption of ELNE#7. In addition, our mechanistic study suggested that P-glycoprotein did not have an inhibitory effect on the permeation of ELNE#7. Notably, ELNE#7 showed significantly enhanced toxicity in LLC and A549 cells compared with ETP-E. These observations support the improved oral absorption of ETP in ELNE#7, suggesting that it is a better alternative than ETP emulsion.


Asunto(s)
Ácido Desoxicólico/química , Emulsiones/química , Etopósido/química , Lípidos/química , Células A549 , Administración Oral , Animales , Disponibilidad Biológica , Células CACO-2 , Línea Celular Tumoral , Ácido Cítrico/química , Ácido Desoxicólico/metabolismo , Emulsiones/metabolismo , Glicerol/química , Células HT29 , Humanos , Absorción Intestinal/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Polietilenglicoles/química , Ratas , Ratas Sprague-Dawley
12.
J Control Release ; 328: 368-394, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-32890552

RESUMEN

In this study, a system for oral delivery of docetaxel (DTX) was prepared to enhance the oral absorption and anticancer efficacy of DTX via metronomic chemotherapy. DTX was complexed with low-molecular-weight methylcellulose (LMC) and loaded into a nanoemulsion (NE), yielding DTX/LMC-NE (DLNE). To further enhance the oral bioavailability, d-alpha-tocopherol polyethylene glycol succinate and sodium deoxycholate (DOCA) complexed with cationic lipid 1,2-dioleyl-3-trimethylammonium propane (DOTAP) (DOCA-DOTAP [DA-TAP] complex) was incorporated into DLNE, yielding the formulation DLNE#10. As expected, DLNE#10 showed 11.3- and 5.81-fold increases in artificial membrane (Pe) and Caco-2 permeability (Papp), respectively, resulting in 249% greater oral bioavailability, compared to free DTX. In contrast, inhibition of clathrin- and caveola-mediated endocytosis, macropinocytosis, and bile acid transporters by chlorpromazine, genistein, amiloride, and actinomycin D in the Caco-2 monolayer reduced the Papp by 55.3%, 44.2%, 35.9%, and 36.5%, respectively; these findings suggest that these routes play important roles in enhancing the oral absorption of DLNE#10. In addition, our mechanistic study suggested that P-glycoprotein (P-gp) did not have an inhibitory effect on the permeation of DLNE#10. Notably, the half-maximal inhibitory concentrations (IC50) of DLNE#10 were 43.5% and 16.8% greater than those of Taxotere® in MCF-7 and 4T1 cells, respectively. Finally, the tumor inhibitory rates in 4T1 cell tumor-bearing mice after oral metronomic dosing of DLNE#10 (20 mg/kg DTX) were 5.02- and 1.65-fold greater than the rates in the untreated control group and intravenously injected DTX (10 mg/kg) group, respectively. These observations support the improved oral absorption and enhanced chemotherapeutic efficacy of DTX in DLNE#10 via metronomic chemotherapy, suggesting that it is a better alternative than intravenous Taxotere®.


Asunto(s)
Antineoplásicos , Nanopartículas , Animales , Ácidos y Sales Biliares , Células CACO-2 , Línea Celular Tumoral , Docetaxel , Humanos , Lípidos , Ratones
13.
J Control Release ; 322: 13-30, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32169534

RESUMEN

In this study, a system for oral delivery of oxaliplatin (OXA) was prepared for metronomic chemotherapy to enhance antitumor efficacy and modulate tumor immunity. OXA was complexed with Nα-deoxycholyl-l-lysyl-methylester (DCK) (OXA/DCK) and formulated as a nanoemulsion (OXA/DCK-NE). OXA/DCK-NE showed 3.35-fold increased permeability across a Caco-2 cell monolayer, resulting in 1.73-fold higher oral bioavailability than free OXA. In addition, treatment of the B16F10.OVA cell line with OXA/DCK-NE resulted in successful upregulation of immunogenic cell death (ICD) markers both in vitro and in vivo. In a B16F10.OVA tumor-bearing mouse model, treatment with OXA/DCK-NE substantially impeded tumor growth by 63.9 ± 13.3% compared to the control group, which was also greater than the intravenous (IV) OXA group. Moreover, treatment with a combination of oral OXA/DCK-NE and anti-programmed cell death protein-1 (αPD-1) antibody resulted in 78.3 ± 9.67% greater inhibition compared to controls. More important, OXA/DCK-NE alone had immunomodulatory effects, such as enhancement of tumor antigen uptake, activation of dendritic cells in tumor-draining lymph nodes, and augmentation of both the population and function of immune effector cells in tumor tissue as well as in the spleen; no such effects were seen in the OXA IV group. These observations provide a rationale for combining oral metronomic OXA with immunotherapy to elicit synergistic antitumor effects.


Asunto(s)
Oxaliplatino , Administración Oral , Animales , Disponibilidad Biológica , Transporte Biológico , Células CACO-2 , Línea Celular Tumoral , Humanos , Ratones
14.
Biomaterials ; 182: 35-43, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30103170

RESUMEN

Metronomic chemotherapy, which is defined as a low-dose and frequent administration of cytotoxic drugs without drug-free breaks, has been recently emerged as an alternative to traditional MTD therapy and has shown therapeutic benefit in breast cancer patients in numbers of clinical studies. Unlike MTD, metronomic chemotherapy acts by multiple mechanisms including antiangiogenic effect and immunomodulation, but the direct cytotoxic effect only playing a minor role due to the lowered dose. In this light, within the limits of p53-deficient breast cancer, we demonstrate the enhanced anticancer effect of metronomic chemotherapy using doxorubicin when combined with Chk1 inhibitor MK-8776 by specifically augmenting the direct cytotoxic effect on cancer cells. Since the oral drug is greatly favored in metronomic chemotherapy due to the frequent and potential long-term administration, we prepared an oral doxorubicin by producing an ionic complex with deoxycholic acid, which showed sufficient bioavailability and anticancer effect when administered orally. MK-8776 selectively enhanced the cytotoxic effect of low-concentration doxorubicin in p53-deficient breast cancer cells by abrogating the Chk1-dependent cell cycle arrest in vitro. Consistently, combining MK-8776 significantly improved the anticancer effect of the daily administered oral doxorubicin in p53-deficient breast cancer xenografts especially in a lower dose of doxorubicin without evident systemic toxicities. Combination therapy of MK-8776 and metronomic oral doxorubicin would be thus promising in the treatment of p53-deficient breast cancer benefited from the augmented direct cytotoxic effect and low risk of toxicities.


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Doxorrubicina/administración & dosificación , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Proteína p53 Supresora de Tumor/genética , Administración Metronómica , Administración Oral , Animales , Antibióticos Antineoplásicos/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Doxorrubicina/uso terapéutico , Femenino , Eliminación de Gen , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico
15.
Int J Cancer ; 141(9): 1912-1920, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28635011

RESUMEN

Chemotherapy have commonly been used in maximum tolerated dose to completely eradicate the cancer. However, such treatments often failed due to the complex and dynamic nature of cancer. Therefore, it has been suggested that cancer should be treated as a chronic disease, controlling its growth by providing continuous therapeutic pressure for long-term. Such an approach, however, requires a therapy that is non-toxic and orally available with sufficient potency. Herein, we propose a radiotherapy-assisted orally available metronomic apoptosis-targeted chemotherapy, which delivers doxorubicin continuously to the irradiated tumor with high selectivity while causing minimal toxicities to the normal tissues. DEVD-S-DOX/DCK complex is the anticancer prodrug for our strategy that could selectively release doxorubicin in the irradiated tumor tissue with sufficient oral bioavailability. The prodrug was completely inactive by itself, but displayed potent anticancer activity when coupled with radiotherapy. Consequently, the daily oral administration of DEVD-S-DOX/DCK in combination with the low-dose radiotherapy effectively suppressed the growth of tumor in vivo with no significant systemic toxicities despite that the accumulated dose of doxorubicin exceeded 150 mg/kg. Therefore, the our novel therapy using DEVD-S-DOX/DCK complex is considered as an outstanding treatment option for treating cancer for long-term attributed to its oral availability and low-toxicity profile as well as the potent anticancer effect.


Asunto(s)
Doxorrubicina/administración & dosificación , Neoplasias/tratamiento farmacológico , Neoplasias/radioterapia , Profármacos/administración & dosificación , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Células CACO-2 , Terapia Combinada , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Humanos , Dosis Máxima Tolerada , Ratones , Neoplasias/patología , Profármacos/química , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Mol Pharm ; 12(6): 1911-20, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25892399

RESUMEN

Currently, oral administration of insulin still remains the best option to avoid the burden of repeated subcutaneous injections and to improve its pharmacokinetics. The objective of the present investigation was to demonstrate the absorption mechanism of insulin in the physical complexation of deoxycholyl-l-lysyl-methylester (DCK) for oral delivery. The oral insulin/DCK complex was prepared by making a physical complex of insulin aspart with DCK through ion-pair interaction in water. For the cellular uptake study, fluorescein-labeled insulin or DCK were prepared according to a standard protocol and applied to Caco-2 or MDCK cell lines. For the PK/PD studies, we performed intrajejunal administration of different formulation of insulin/DCK complex to diabetic rats. The resulting insulin and DCK complex demonstrated greatly enhanced lipophilicity as well as increased permeation across Caco-2 monolayers. The immunofluorescence study revealed the distribution of the complex in the cytoplasm of Caco-2 cells. Moreover, in the apical sodium bile acid transporter (ASBT) transfected MDCK, the insulin/DCK complex showed interaction with ASBT, and also demonstrated absorption through passive diffusion. We could not find that any evidence of endocytosis in relation to the uptake of insulin complex in vitro. In the rat intestine model, the highest absorption of insulin complex was observed in the jejunum at 1 h and then in the ileum at 2-4 h. In PK/PD study, the complex showed a similar PK profile to that of SC insulin. Overall, the study showed that the effect of DCK on enhancing the absorption of insulin resulted from transcellular processes as well as bile acid transporter activity.


Asunto(s)
Ácido Quenodesoxicólico/análogos & derivados , Portadores de Fármacos/química , Insulina/química , Intestino Delgado/metabolismo , Lisina/análogos & derivados , Administración Oral , Animales , Células CACO-2 , Ácido Quenodesoxicólico/química , Ácido Quenodesoxicólico/farmacocinética , Perros , Portadores de Fármacos/farmacocinética , Humanos , Insulina/farmacocinética , Yeyuno/metabolismo , Lisina/química , Lisina/farmacocinética , Células de Riñón Canino Madin Darby , Masculino , Ratas , Ratas Sprague-Dawley
17.
Biomaterials ; 34(33): 8444-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23895999

RESUMEN

A method for the sustained delivery of exenatide was proposed using nanoparticles (NPs) with a core/shell structure. The interactions between lipid bilayers and Pluronics were utilized to form various NPs using a layer-by-layer approach. Transmittance electron microscopy and dynamic light scattering were used to examine the morphology of the NPs. The in vitro release pattern was observed as a function of changes in the structure of the NPs, and the structural integrity of exenatide released was examined by SDS-PAGE analysis. Pharmacokinetics and antidiabetic effects were also observed with the structural change of NPs using in vivo animal models. In vitro-in vivo correlation was discussed in relation to manipulation of the NP structures.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Nanopartículas/química , Péptidos/uso terapéutico , Ponzoñas/uso terapéutico , Animales , Electroforesis en Gel de Poliacrilamida , Exenatida , Membrana Dobles de Lípidos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Péptidos/química , Ponzoñas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...