Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(4): 982-997, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36333953

RESUMEN

Our understanding of how increasing atmospheric CO2 and climate change influences the marine CO2 system and in turn ecosystems has increasingly focused on perturbations to carbonate chemistry variability. This variability can affect ocean-climate feedbacks and has been shown to influence marine ecosystems. The seasonal variability of the ocean CO2 system has already changed, with enhanced seasonal variations in the surface ocean pCO2 over recent decades and further amplification projected by models over the 21st century. Mesocosm studies and CO2 vent sites indicate that diurnal variability of the CO2 system, the amplitude of which in extreme events can exceed that of mean seasonal variability, is also likely to be altered by climate change. Here, we modified a global ocean biogeochemical model to resolve physically and biologically driven diurnal variability of the ocean CO2 system. Forcing the model with 3-h atmospheric outputs derived from an Earth system model, we explore how surface ocean diurnal variability responds to historical changes and project how it changes under two contrasting 21st-century emission scenarios. Compared to preindustrial values, the global mean diurnal amplitude of pCO2 increases by 4.8 µatm (+226%) in the high-emission scenario but only 1.2 µatm (+55%) in the high-mitigation scenario. The probability of extreme diurnal amplitudes of pCO2 and [H+ ] is also affected, with 30- to 60-fold increases relative to the preindustrial under high 21st-century emissions. The main driver of heightened pCO2 diurnal variability is the enhanced sensitivity of pCO2 to changes in temperature as the ocean absorbs atmospheric CO2 . Our projections suggest that organisms in the future ocean will be exposed to enhanced diurnal variability in pCO2 and [H+ ], with likely increases in the associated metabolic cost that such variability imposes.


Asunto(s)
Dióxido de Carbono , Ecosistema , Dióxido de Carbono/análisis , Cambio Climático , Predicción , Océanos y Mares
2.
Nature ; 610(7930): 94-100, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198779

RESUMEN

Long-term stress on marine organisms from ocean acidification will differ between seasons. As atmospheric carbon dioxide (CO2) increases, so do seasonal variations of ocean CO2 partial pressure ([Formula: see text]), causing summer and winter long-term trends to diverge1-5. Trends may be further influenced by an unexplored factor-changes in the seasonal timing of [Formula: see text]. In Arctic Ocean surface waters, the observed timing is typified by a winter high and summer low6 because biological effects dominate thermal effects. Here we show that 27 Earth system models simulate similar timing under historical forcing but generally project that the summer low, relative to the annual mean, eventually becomes a high across much of the Arctic Ocean under mid-to-high-level CO2 emissions scenarios. Often the greater increase in summer [Formula: see text], although gradual, abruptly inverses the chronological order of the annual high and low, a phenomenon not previously seen in climate-related variables. The main cause is the large summer sea surface warming7 from earlier retreat of seasonal sea ice8. Warming and changes in other drivers enhance this century's increase in extreme summer [Formula: see text] by 29 ± 9 per cent compared with no change in driver seasonalities. Thus the timing change worsens summer ocean acidification, which in turn may lower the tolerance of endemic marine organisms to increasing summer temperatures.


Asunto(s)
Dióxido de Carbono , Océanos y Mares , Estaciones del Año , Agua de Mar , Animales , Organismos Acuáticos , Regiones Árticas , Dióxido de Carbono/análisis , Calor , Concentración de Iones de Hidrógeno , Cubierta de Hielo , Agua de Mar/química
3.
Glob Chang Biol ; 26(11): 6168-6179, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32970390

RESUMEN

Earth System Models project that global climate change will reduce ocean net primary production (NPP), upper trophic level biota biomass and potential fisheries catches in the future, especially in the eastern equatorial Pacific. However, projections from Earth System Models are undermined by poorly constrained assumptions regarding the biological cycling of iron, which is the main limiting resource for NPP over large parts of the ocean. In this study, we show that the climate change trends in NPP and the biomass of upper trophic levels are strongly affected by modifying assumptions associated with phytoplankton iron uptake. Using a suite of model experiments, we find 21st century climate change impacts on regional NPP range from -12.3% to +2.4% under a high emissions climate change scenario. This wide range arises from variations in the efficiency of iron retention in the upper ocean in the eastern equatorial Pacific across different scenarios of biological iron uptake, which affect the strength of regional iron limitation. Those scenarios where nitrogen limitation replaced iron limitation showed the largest projected NPP declines, while those where iron limitation was more resilient displayed little future change. All model scenarios have similar skill in reproducing past inter-annual variations in regional ocean NPP, largely due to limited change in the historical period. Ultimately, projections of end of century upper trophic level biomass change are altered by 50%-80% across all plausible scenarios. Overall, we find that uncertainties in the biological iron cycle cascade through open ocean pelagic ecosystems, from plankton to fish, affecting their evolution under climate change. This highlights additional challenges to developing effective conservation and fisheries management policies under climate change.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biomasa , Explotaciones Pesqueras , Hierro
4.
Curr Clim Change Rep ; 6(3): 95-119, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32837849

RESUMEN

Purpose of Review: The changes or updates in ocean biogeochemistry component have been mapped between CMIP5 and CMIP6 model versions, and an assessment made of how far these have led to improvements in the simulated mean state of marine biogeochemical models within the current generation of Earth system models (ESMs). Recent Findings: The representation of marine biogeochemistry has progressed within the current generation of Earth system models. However, it remains difficult to identify which model updates are responsible for a given improvement. In addition, the full potential of marine biogeochemistry in terms of Earth system interactions and climate feedback remains poorly examined in the current generation of Earth system models. Summary: Increasing availability of ocean biogeochemical data, as well as an improved understanding of the underlying processes, allows advances in the marine biogeochemical components of the current generation of ESMs. The present study scrutinizes the extent to which marine biogeochemistry components of ESMs have progressed between the 5th and the 6th phases of the Coupled Model Intercomparison Project (CMIP).

5.
Nature ; 582(7812): 379-383, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32555488

RESUMEN

The ongoing uptake of anthropogenic carbon by the ocean leads to ocean acidification, a process that results in a reduction in pH and in the saturation state of biogenic calcium carbonate minerals aragonite (Ωarag) and calcite (Ωcalc)1,2. Because of its naturally low Ωarag and Ωcalc (refs. 2,3), the Arctic Ocean is considered the region most susceptible to future acidification and associated ecosystem impacts4-7. However, the magnitude of projected twenty-first century acidification differs strongly across Earth system models8. Here we identify an emergent multi-model relationship between the simulated present-day density of Arctic Ocean surface waters, used as a proxy for Arctic deep-water formation, and projections of the anthropogenic carbon inventory and coincident acidification. By applying observations of sea surface density, we constrain the end of twenty-first century Arctic Ocean anthropogenic carbon inventory to 9.0 ± 1.6 petagrams of carbon and the basin-averaged Ωarag and Ωcalc to 0.76 ± 0.06 and 1.19 ± 0.09, respectively, under the high-emissions Representative Concentration Pathway 8.5 climate scenario. Our results indicate greater regional anthropogenic carbon storage and ocean acidification than previously projected3,8 and increase the probability that large parts of the mesopelagic Arctic Ocean will be undersaturated with respect to calcite by the end of the century. This increased rate of Arctic Ocean acidification, combined with rapidly changing physical and biogeochemical Arctic conditions9-11, is likely to exacerbate the impact of climate change on vulnerable Arctic marine ecosystems.


Asunto(s)
Carbono/análisis , Océanos y Mares , Agua de Mar/química , Animales , Organismos Acuáticos , Regiones Árticas , Carbonato de Calcio/análisis , Carbono/química , Dióxido de Carbono/análisis , Ecosistema , Historia del Siglo XXI , Actividades Humanas , Concentración de Iones de Hidrógeno
6.
Glob Chang Biol ; 25(1): 218-229, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295401

RESUMEN

The impact of climate change on the marine food web is highly uncertain. Nonetheless, there is growing consensus that global marine primary production will decline in response to future climate change, largely due to increased stratification reducing the supply of nutrients to the upper ocean. Evidence to date suggests a potential amplification of this response throughout the trophic food web, with more dramatic responses at higher trophic levels. Here we show that trophic amplification of marine biomass declines is a consistent feature of the Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth System Models, across different scenarios of future climate change. Under the business-as-usual Representative Concentration Pathway 8.5 (RCP8.5) global mean phytoplankton biomass is projected to decline by 6.1% ± 2.5% over the twenty-first century, while zooplankton biomass declines by 13.6% ± 3.0%. All models project greater relative declines in zooplankton than phytoplankton, with annual zooplankton biomass anomalies 2.24 ± 1.03 times those of phytoplankton. The low latitude oceans drive the projected trophic amplification of biomass declines, with models exhibiting variable trophic interactions in the mid-to-high latitudes and similar relative changes in phytoplankton and zooplankton biomass. Under the assumption that zooplankton biomass is prey limited, an analytical explanation of the trophic amplification that occurs in the low latitudes can be derived from generic plankton differential equations. Using an ocean biogeochemical model, we show that the inclusion of variable C:N:P phytoplankton stoichiometry can substantially increase the trophic amplification of biomass declines in low latitude regions. This additional trophic amplification is driven by enhanced nutrient limitation decreasing phytoplankton N and P content relative to C, hence reducing zooplankton growth efficiency. Given that most current Earth System Models assume that phytoplankton C:N:P stoichiometry is constant, such models are likely to underestimate the extent of negative trophic amplification under projected climate change.


Asunto(s)
Biomasa , Cambio Climático , Fitoplancton/fisiología , Zooplancton/fisiología , Animales , Cadena Alimentaria , Modelos Biológicos , Océanos y Mares
7.
Sci Rep ; 6: 22984, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26987406

RESUMEN

Anthropogenic emissions of carbon dioxide (CO2) are causing ocean acidification, lowering seawater aragonite (CaCO3) saturation state (Ω arag), with potentially substantial impacts on marine ecosystems over the 21(st) Century. Calcifying organisms have exhibited reduced calcification under lower saturation state conditions in aquaria. However, the in situ sensitivity of calcifying ecosystems to future ocean acidification remains unknown. Here we assess the community level sensitivity of calcification to local CO2-induced acidification caused by natural respiration in an unperturbed, biodiverse, temperate intertidal ecosystem. We find that on hourly timescales nighttime community calcification is strongly influenced by Ω arag, with greater net calcium carbonate dissolution under more acidic conditions. Daytime calcification however, is not detectably affected by Ω arag. If the short-term sensitivity of community calcification to Ω arag is representative of the long-term sensitivity to ocean acidification, nighttime dissolution in these intertidal ecosystems could more than double by 2050, with significant ecological and economic consequences.


Asunto(s)
Ácidos/química , Carbonato de Calcio/análisis , Dióxido de Carbono/análisis , Agua de Mar/química , Ciclo del Carbono , Ecosistema , Concentración de Iones de Hidrógeno , Océanos y Mares , Fenómenos Físicos
8.
Nature ; 531(7594): 362-5, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26909578

RESUMEN

Approximately one-quarter of the anthropogenic carbon dioxide released into the atmosphere each year is absorbed by the global oceans, causing measurable declines in surface ocean pH, carbonate ion concentration ([CO3(2-)]), and saturation state of carbonate minerals (Ω). This process, referred to as ocean acidification, represents a major threat to marine ecosystems, in particular marine calcifiers such as oysters, crabs, and corals. Laboratory and field studies have shown that calcification rates of many organisms decrease with declining pH, [CO3(2-)], and Ω. Coral reefs are widely regarded as one of the most vulnerable marine ecosystems to ocean acidification, in part because the very architecture of the ecosystem is reliant on carbonate-secreting organisms. Acidification-induced reductions in calcification are projected to shift coral reefs from a state of net accretion to one of net dissolution this century. While retrospective studies show large-scale declines in coral, and community, calcification over recent decades, determining the contribution of ocean acidification to these changes is difficult, if not impossible, owing to the confounding effects of other environmental factors such as temperature. Here we quantify the net calcification response of a coral reef flat to alkalinity enrichment, and show that, when ocean chemistry is restored closer to pre-industrial conditions, net community calcification increases. In providing results from the first seawater chemistry manipulation experiment of a natural coral reef community, we provide evidence that net community calcification is depressed compared with values expected for pre-industrial conditions, indicating that ocean acidification may already be impairing coral reef growth.


Asunto(s)
Antozoos/metabolismo , Calcificación Fisiológica , Arrecifes de Coral , Agua de Mar/química , Animales , Antozoos/química , Carbonato de Calcio/metabolismo , Ciclo del Carbono , Colorantes , Concentración de Iones de Hidrógeno , Océanos y Mares , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA