Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Radioact ; 237: 106698, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34304113

RESUMEN

Gas samples taken from two historic underground nuclear tests done in 1989 at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), were examined to determine how xenon isotopes fractionate because of early-time cavity processes, transport through the rock, or dispersal through tunnels. Xenon isotopes are currently being used to distinguish civilian sources of xenon in the atmosphere from sources associated with underground nuclear explosions (UNEs). The two nuclear tests included (1) BARNWELL, a test conducted in a vertical shaft approximately 600 m below ground surface at Pahute Mesa, and (2) DISKO ELM, a horizontal line-of-sight test done in P-tunnel approximately 261 m below the surface of Aqueduct Mesa. Numerical flow and transport models developed for the two sites had mixed success when attempting to match the observed xenon isotope ratios. At the BARNWELL site, the simulated xenon isotope ratios were consistent with measurements from the chimney and ground surface, and appeared to have been affected primarily by fractionation during subsurface transport. At the DISKO ELM site, samples taken from two elevations in the chimney failed to show the degree of fractionation predicted by the models during transport, and did not show evidence for significant fractionation due to early-time condensation of refractory xenon-precursor radionuclides into the melt glass. Gas samples taken from the adjacent tunnels in the days following the test showed mixed evidence for early-time separation of xenon isotopes from their iodine precursors.


Asunto(s)
Contaminantes Radiactivos del Aire , Monitoreo de Radiación , Contaminantes Radiactivos del Aire/análisis , Atmósfera , Explosiones , Radioisótopos , Radioisótopos de Xenón/análisis
2.
J Environ Radioact ; 222: 106297, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32739734

RESUMEN

An underground nuclear explosion (UNE) generates radioactive gases that can be transported through fractures to the ground surface over timescales of hours to months. If detected, the presence of particular short-lived radionuclides in the gas can provide strong evidence that a recent UNE has occurred. By drawing comparisons between sixteen similar historical U.S. UNEs where radioactive gas was or was not detected, we identified factors that control the occurrence and timing of breakthrough at the ground surface. The factors that we evaluated include the post-test atmospheric conditions, local geology, and surface geology at the UNE sites. The UNEs, all located on Pahute Mesa on the Nevada National Security Site (NNSS), had the same announced yield range (20-150 kt), similar burial depths in the unsaturated zone, and were designed and performed by the same organization during the mid-to-late 1980s. Results of the analysis indicate that breakthrough at the ground surface is largely controlled by a combination of the post-UNE barometric pressure changes in the months following the UNE, and the volume of air-filled pore space above the UNE. Conceptually simplified numerical models of each of the 16 historical UNEs that include these factors successfully predict the occurrence (5 of the UNEs) or lack of occurrence (remaining 11 UNEs) of post-UNE gas seepage to the ground surface. However, the data analysis and modeling indicates that estimates of the meteorological conditions and of the post-UNE, site-specific subsurface environment including air-filled porosity, in combination, may be necessary to successfully predict late-time detectable gas breakthrough for a suspected UNE site.


Asunto(s)
Monitoreo de Radiación , Contaminantes Radiactivos , Monitoreo del Ambiente , Gases , Geología , Nevada , Radioisótopos
3.
Chemosphere ; 91(3): 248-57, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23260249

RESUMEN

Aquifer heterogeneity controls spatial and temporal variability of reactive transport parameters and has significant impacts on subsurface modeling of flow, transport, and remediation. Upscaling (or homogenization) is a process to replace a heterogeneous domain with a homogeneous one such that both reproduce the same response. To make reliable and accurate predictions of reactive transport for contaminant in chemically and physically heterogeneous porous media, subsurface reactive transport modeling needs upscaled parameters such as effective retardation factor to perform field-scale simulations. This paper develops a conceptual model of multimodal reactive mineral facies for upscaling reactive transport parameters of hierarchical heterogeneous porous media. Based on the conceptual model, covariance of hydraulic conductivity, sorption coefficient, flow velocity, retardation factor, and cross-covariance between flow velocity and retardation factor are derived from geostatistical characterizations of a three-dimensional unbounded aquifer system. Subsequently, using a Lagrangian approach the scale-dependent analytical expressions are derived to describe the scaling effect of effective retardation factors in temporal and spatial domains. When time and space scales become sufficiently large, the effective retardation factors approximate their composite arithmetic mean. Correlation between the hydraulic conductivity and the sorption coefficient can significantly affect the values of the effective retardation factor in temporal and spatial domains. When the temporal and spatial scales are relatively small, scaling effect of the effective retardation factors is relatively large. This study provides a practical methodology to develop effective transport parameters for field-scale modeling at which remediation and risk assessment is actually conducted. It does not only bridge the gap between bench-scale measurements to field-scale modeling, but also provide new insights into the influence of hierarchical mineral distribution on effective retardation factor.


Asunto(s)
Agua Subterránea/química , Minerales/química , Modelos Químicos , Contaminantes Químicos del Agua/química , Adsorción , Monitoreo del Ambiente/métodos , Porosidad , Movimientos del Agua
4.
J Contam Hydrol ; 62-63: 731-50, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12714319

RESUMEN

This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The numerical model is calibrated by matching available water level measurements using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM and parameter estimation software PEST) and model setup allows for efficient calibration of multiple conceptual models. Until now, the Large Hydraulic Gradient has been simulated using a low-permeability, east-west oriented feature, even though direct evidence for this feature is lacking. In addition to this model, we investigate and calibrate three additional conceptual models of the Large Hydraulic Gradient, all of which are based on a presumed zone of hydrothermal chemical alteration north of Yucca Mountain. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the potential repository that record differences in the predicted groundwater flow regime. The results show that Large Hydraulic Gradient can be represented with the alternate conceptual models that include the hydrothermally altered zone. The predicted pathways are mildly sensitive to the choice of the conceptual model and more sensitive to the quality of calibration in the vicinity on the repository. These differences are most likely due to different degrees of fit of model to data, and do not represent important differences in hydrologic conditions for the different conceptual models.


Asunto(s)
Modelos Teóricos , Residuos Radiactivos , Eliminación de Residuos , Movimientos del Agua , Calibración , Predicción , Fenómenos Geológicos , Geología , Nevada , Permeabilidad , Agua/química
5.
Ground Water ; 41(2): 200-11, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12656286

RESUMEN

Large-scale models are frequently used to estimate fluxes to small-scale models. The uncertainty associated with these flux estimates, however, is rarely addressed. We present a case study from the Española Basin, northern New Mexico, where we use a basin-scale model coupled with a high-resolution, nested site-scale model. Both models are three-dimensional and are analyzed by codes FEHM and PEST. Using constrained nonlinear optimization, we examine the effect of parameter uncertainty in the basin-scale model on the nonlinear confidence limits of predicted fluxes to the site-scale model. We find that some of the fluxes are very well constrained, while for others there is fairly large uncertainty. Site-scale transport simulation results, however, are relatively insensitive to the estimated uncertainty in the fluxes. We also compare parameter estimates obtained by the basin- and site-scale inverse models. Differences in the model grid resolution (scale of parameter estimation) result in differing delineation of hydrostratigraphic units, so the two models produce different estimates for some units. The effect is similar to the observed scale effect in medium properties owing to differences in tested volume. More important, estimation uncertainty of model parameters is quite different at the two scales. Overall, the basin inverse model resulted in significantly lower estimates of uncertainty, because of the larger calibration dataset available. This suggests that the basin-scale model contributes not only important boundary condition information but also improved parameter identification for some units. Our results demonstrate that caution is warranted when applying parameter estimates inferred from a large-scale model to small-scale simulations, and vice versa.


Asunto(s)
Modelos Teóricos , Movimientos del Agua , Abastecimiento de Agua , Calibración , Fenómenos Geológicos , Geología , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA