Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 621(7978): 389-395, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648852

RESUMEN

Insulin resistance is the primary pathophysiology underlying metabolic syndrome and type 2 diabetes1,2. Previous metagenomic studies have described the characteristics of gut microbiota and their roles in metabolizing major nutrients in insulin resistance3-9. In particular, carbohydrate metabolism of commensals has been proposed to contribute up to 10% of the host's overall energy extraction10, thereby playing a role in the pathogenesis of obesity and prediabetes3,4,6. Nevertheless, the underlying mechanism remains unclear. Here we investigate this relationship using a comprehensive multi-omics strategy in humans. We combine unbiased faecal metabolomics with metagenomics, host metabolomics and transcriptomics data to profile the involvement of the microbiome in insulin resistance. These data reveal that faecal carbohydrates, particularly host-accessible monosaccharides, are increased in individuals with insulin resistance and are associated with microbial carbohydrate metabolisms and host inflammatory cytokines. We identify gut bacteria associated with insulin resistance and insulin sensitivity that show a distinct pattern of carbohydrate metabolism, and demonstrate that insulin-sensitivity-associated bacteria ameliorate host phenotypes of insulin resistance in a mouse model. Our study, which provides a comprehensive view of the host-microorganism relationships in insulin resistance, reveals the impact of carbohydrate metabolism by microbiota, suggesting a potential therapeutic target for ameliorating insulin resistance.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Microbioma Gastrointestinal , Resistencia a la Insulina , Animales , Humanos , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Microbioma Gastrointestinal/fisiología , Resistencia a la Insulina/fisiología , Monosacáridos/metabolismo , Insulina/metabolismo , Síndrome Metabólico/metabolismo , Heces/química , Heces/microbiología , Metabolómica
2.
Methods Mol Biol ; 2351: 201-210, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34382191

RESUMEN

Regulation of gene expression is a key feature for higher eukaryotes and how chromatin topology relates to gene activation is an intense area of research. Enhancer-promoter interactions are believed to mediate activation of target genes. Bidirectional transcription represents one hallmark of active enhancers that can be measured using transcriptome technologies such as Cap analysis of gene expression (CAGE). Recently, we have developed RNA and DNA interacting complexes ligated and sequenced (RADICL-Seq) a novel methodology to map genome-wide RNA-chromatin interactions in intact nuclei. Here, we describe how CAGE and RADICL-Seq data can be used to characterize enhancer elements and identify their target genes.


Asunto(s)
Biología Computacional/métodos , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Caperuzas de ARN , Algoritmos , Cromatina/genética , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Sitio de Iniciación de la Transcripción , Transcripción Genética , Activación Transcripcional , Transcriptoma
3.
J Biotechnol ; 332: 72-82, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-33836165

RESUMEN

Antibody-drug conjugates offers many advantages as a drug delivery platform that allows for highly specific targeting of cell types and genes. Ideally, testing the efficacy of these systems requires two cell types to be different only in the gene targeted by the drug, with the rest of the cellular machinery unchanged, in order to minimize other potential differences from obscuring the effects of the drug. In this study, we created multiple variants of U87MG cells with targeted mutation in the TP53 gene using the CRISPR-Cas9 system, and determined that their major transcriptional differences stem from the loss of p53 function. Using the transcriptome data, we predicted which mutant clones would have less divergent phenotypes from the wild type and thereby serve as the best candidates to be used as drug delivery testing platforms. Further in vitro and in vivo assays of cell morphology, proliferation rate and target antigen-mediated uptake supported our predictions. Based on the combined analysis results, we successfully selected the best qualifying mutant clone. This study serves as proof-of-principle of the approach and paves the way for extending to additional cell types and target genes.


Asunto(s)
Genes p53 , Preparaciones Farmacéuticas , Sistemas CRISPR-Cas/genética , Línea Celular , Transcriptoma , Proteína p53 Supresora de Tumor/genética
4.
Exp Mol Med ; 52(9): 1409-1418, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32929222

RESUMEN

The human body consists of 37 trillion single cells represented by over 50 organs that are stitched together to make us who we are, yet we still have very little understanding about the basic units of our body: what cell types and states make up our organs both compositionally and spatially. Previous efforts to profile a wide range of human cell types have been attempted by the FANTOM and GTEx consortia. Now, with the advancement in genomic technologies, profiling the human body at single-cell resolution is possible and will generate an unprecedented wealth of data that will accelerate basic and clinical research with tangible applications to future medicine. To date, several major organs have been profiled, but the challenges lie in ways to integrate single-cell genomics data in a meaningful way. In recent years, several consortia have begun to introduce harmonization and equity in data collection and analysis. Herein, we introduce existing and nascent single-cell genomics consortia, and present benefits to necessitate single-cell genomic consortia in a regional environment to achieve the universal human cell reference dataset.


Asunto(s)
Genómica , Análisis de la Célula Individual , Animales , Biología Computacional/métodos , Bases de Datos Genéticas , Estudio de Asociación del Genoma Completo/métodos , Genómica/métodos , Humanos , Análisis de la Célula Individual/métodos , Navegador Web
5.
Nat Commun ; 10(1): 360, 2019 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-30664627

RESUMEN

Single-cell transcriptomic profiling is a powerful tool to explore cellular heterogeneity. However, most of these methods focus on the 3'-end of polyadenylated transcripts and provide only a partial view of the transcriptome. We introduce C1 CAGE, a method for the detection of transcript 5'-ends with an original sample multiplexing strategy in the C1TM microfluidic system. We first quantifiy the performance of C1 CAGE and find it as accurate and sensitive as other methods in the C1 system. We then use it to profile promoter and enhancer activities in the cellular response to TGF-ß of lung cancer cells and discover subpopulations of cells differing in their response. We also describe enhancer RNA dynamics revealing transcriptional bursts in subsets of cells with transcripts arising from either strand in a mutually exclusive manner, validated using single molecule fluorescence in situ hybridization.


Asunto(s)
Elementos de Facilitación Genéticos , Fibroblastos/metabolismo , ARN Mensajero/genética , Análisis de la Célula Individual/métodos , Sitio de Iniciación de la Transcripción , Transcriptoma , Células A549 , Animales , Línea Celular , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Perfilación de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Ratones , Técnicas Analíticas Microfluídicas , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual/instrumentación , Factor de Crecimiento Transformador beta/farmacología
6.
J Virol ; 90(20): 9058-74, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27489280

RESUMEN

UNLABELLED: Cell culture systems reproducing virus replication can serve as unique models for the discovery of novel bioactive molecules. Here, using a hepatitis C virus (HCV) cell culture system, we identified neoechinulin B (NeoB), a fungus-derived compound, as an inhibitor of the liver X receptor (LXR). NeoB was initially identified by chemical screening as a compound that impeded the production of infectious HCV. Genome-wide transcriptome analysis and reporter assays revealed that NeoB specifically inhibits LXR-mediated transcription. NeoB was also shown to interact directly with LXRs. Analysis of structural analogs suggested that the molecular interaction of NeoB with LXR correlated with the capacity to inactivate LXR-mediated transcription and to modulate lipid metabolism in hepatocytes. Our data strongly suggested that NeoB is a novel LXR antagonist. Analysis using NeoB as a bioprobe revealed that LXRs support HCV replication: LXR inactivation resulted in dispersion of double-membrane vesicles, putative viral replication sites. Indeed, cells treated with NeoB showed decreased replicative permissiveness for poliovirus, which also replicates in double-membrane vesicles, but not for dengue virus, which replicates via a distinct membrane compartment. Together, our data suggest that LXR-mediated transcription regulates the formation of virus-associated membrane compartments. Significantly, inhibition of LXRs by NeoB enhanced the activity of all known classes of anti-HCV agents, and NeoB showed especially strong synergy when combined with interferon or an HCV NS5A inhibitor. Thus, our chemical genetics analysis demonstrates the utility of the HCV cell culture system for identifying novel bioactive molecules and characterizing the virus-host interaction machinery. IMPORTANCE: Hepatitis C virus (HCV) is highly dependent on host factors for efficient replication. In the present study, we used an HCV cell culture system to screen an uncharacterized chemical library. Our results identified neoechinulin B (NeoB) as a novel inhibitor of the liver X receptor (LXR). NeoB inhibited the induction of LXR-regulated genes and altered lipid metabolism. Intriguingly, our results indicated that LXRs are critical to the process of HCV replication: LXR inactivation by NeoB disrupted double-membrane vesicles, putative sites of viral replication. Moreover, NeoB augmented the antiviral activity of all known classes of currently approved anti-HCV agents without increasing cytotoxicity. Thus, our strategy directly links the identification of novel bioactive compounds to basic virology and the development of new antiviral agents.


Asunto(s)
Alcaloides/metabolismo , Antivirales/metabolismo , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Hongos/química , Hepacivirus/efectos de los fármacos , Receptores X del Hígado/antagonistas & inhibidores , Piperazinas/metabolismo , Alcaloides/aislamiento & purificación , Antivirales/aislamiento & purificación , Técnicas de Cultivo de Célula , Línea Celular , Virus del Dengue/efectos de los fármacos , Virus del Dengue/fisiología , Sinergismo Farmacológico , Hepacivirus/fisiología , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Piperazinas/aislamiento & purificación , Poliovirus/efectos de los fármacos , Poliovirus/fisiología , Unión Proteica , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA