Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biosens Bioelectron ; 251: 116102, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350240

RESUMEN

We present a label-free colorimetric CRISPR/Cas-based method enabling affordable molecular diagnostics for SARS-CoV-2. This technique utilizes 3,3'-diethylthiadicarbocyanine iodide (DISC2(5)) which exhibits a distinct color transition from purple to blue when it forms dimers by inserting into the duplex of the thymidine adenine (TA) repeat sequence. Loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) was used to amplify target samples, which were subsequently subjected to the CRISPR/Cas12a system. The target amplicons would activate Cas12a to degrade nearby TA repeat sequences, preserving DISC2(5) in its free form to display purple as opposed to blue in the absence of the target. Based on this design approach, SARS-CoV-2 RNA was colorimetrically detected very sensitively down to 2 copies/µL, and delta and omicron variants of SARS-CoV-2 were also successfully identified. The practical diagnostic utility of this method was further validated by reliably identifying 179 clinical samples including 20 variant samples with 100% clinical sensitivity and specificity. This technique has the potential to become a promising CRISPR-based colorimetric platform for molecular diagnostics of a wide range of target pathogens.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , Colorimetría , ARN Viral , Adenina , Técnicas de Amplificación de Ácido Nucleico
2.
Nat Commun ; 15(1): 799, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280855

RESUMEN

Three-dimensional human intestinal organoids (hIO) are widely used as a platform for biological and biomedical research. However, reproducibility and challenges for large-scale expansion limit their applicability. Here, we establish a human intestinal stem cell (ISC) culture method expanded under feeder-free and fully defined conditions through selective enrichment of ISC populations (ISC3D-hIO) within hIO derived from human pluripotent stem cells. The intrinsic self-organisation property of ISC3D-hIO, combined with air-liquid interface culture in a minimally defined medium, forces ISC3D-hIO to differentiate into the intestinal epithelium with cellular diversity, villus-like structure, and barrier integrity. Notably, ISC3D-hIO is an ideal cell source for gene editing to study ISC biology and transplantation for intestinal diseases. We demonstrate the intestinal epithelium differentiated from ISC3D-hIO as a model system to study severe acute respiratory syndrome coronavirus 2 viral infection. ISC3D-hIO culture technology provides a biological tool for use in regenerative medicine and disease modelling.


Asunto(s)
Intestinos , Células Madre Pluripotentes , Humanos , Reproducibilidad de los Resultados , Mucosa Intestinal , Organoides , Diferenciación Celular
3.
Biotechnol J ; 19(1): e2300319, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37853601

RESUMEN

Infectious diseases such as Coronavirus disease 2019 (COVID-19) and Middle East respiratory syndrome (MERS) present an increasingly persistent crisis in many parts of the world. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The angiotensin-converting enzyme 2 (ACE2) is a crucial cellular receptor for SARS-CoV-2 infection. Inhibition of the interaction between SARS-CoV-2 and ACE2 has been proposed as a target for the prevention and treatment of COVID-19. We produced four recombinant plant-derived ACE2 isoforms with or without the mu tailpiece (µ-tp) of immunoglobulin M (IgM) and the KDEL endoplasmic reticulum retention motif in a plant expression system. The plant-derived ACE2 isoforms bound whole SARS-CoV-2 virus and the isolated receptor binding domains of SARS-CoV-2 Alpha, Beta, Gamma, Delta, and Omicron variants. Fusion of µ-tp and KDEL to the ACE2 protein (ACE2 µK) had enhanced binding activity with SARS-CoV-2 in comparison with unmodified ACE2 protein derived from CHO cells. Furthermore, the plant-derived ACE2 µK protein exhibited no cytotoxic effects on Vero E6 cells and effectively inhibited SARS-CoV-2 infection. The efficient and rapid scalability of plant-derived ACE2 µK protein offers potential for the development of preventive and therapeutic agents in the early response to future viral outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Enzima Convertidora de Angiotensina 2/metabolismo , Proteínas de Plantas/metabolismo , Cricetulus , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo
4.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139287

RESUMEN

Tagetes erecta and Ocimum basilicum are medicinal plants that exhibit anti-inflammatory effects against various diseases. However, their individual and combined effects on osteoarthritis (OA) are unknown. Herein, we aimed to demonstrate the effects of T. erecta, O. basilicum, and their mixture, WGA-M001, on OA pathogenesis. The administration of total extracts of T. erecta and O. basilicum reduced cartilage degradation and inflammation without causing cytotoxicity. Although WGA-M001 contained lower concentrations of the individual extracts, it strongly inhibited the expression of pathogenic factors. In vivo OA studies also supported that WGA-M001 had protective effects against cartilage destruction at lower doses than those of T. erecta and O. basilicum. Moreover, its effects were stronger than those observed using Boswellia and Perna canaliculus. WGA-M001 effectively inhibited the interleukin (IL)-1ß-induced nuclear factor kappa-light-chain-enhancer of the activated B cell (NF-κB) pathway and ERK phosphorylation. Furthermore, RNA-sequence analysis also showed that WGA-M001 decreased the expression of genes related to the IL-1ß-induced NF-κB and ERK signaling pathways. Therefore, WGA-M001 is more effective than the single total extracts of T. erecta and O. basilicum in attenuating OA progression by regulating ERK and NF-κB signaling. Our results open new possibilities for WGA-M001 as a potential therapeutic agent for OA treatment.


Asunto(s)
Ocimum basilicum , Osteoartritis , Tagetes , FN-kappa B/metabolismo , Tagetes/metabolismo , Condrocitos/metabolismo , Cartílago/metabolismo , Osteoartritis/patología
5.
Front Microbiol ; 14: 1256090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37779710

RESUMEN

Subtype H10 avian influenza viruses (AIV) are distributed worldwide in wild aquatic birds, and can infect humans and several other mammalian species. In the present study, we investigated the naturally mutated PB2 gene in A/aquatic bird/South Korea/SW1/2018 (A/SW1/18, H10N1), isolated from wild birds during the 2018-2019 winter season. This virus was originally found in South Korea, and is similar to isolates from mainland China and Mongolia. It had low pathogenicity, lacked a multi-basic cleavage site, and showed a binding preference for α2,3-linked sialic acids. However, it can infect mice, causing severe disease and lung pathology. SW1 was also transmitted by direct contact in ferrets, and replicated in the respiratory tract tissue, with no evidence of extrapulmonary spread. The pathogenicity and transmissibility of SW1 in mouse and ferret models were similar to those of the pandemic strain A/California/04/2009 (A/CA/04, H1N1). These factors suggest that subtype H10 AIVs have zoonotic potential and may transmit from human to human, thereby posing a potential threat to public health. Therefore, the study highlights the urgent need for closer monitoring of subtype H10 AIVs through continued surveillance of wild aquatic birds.

6.
Small ; : e2305148, 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37635100

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic is a serious global threat with surging new variants of concern. Although global vaccinations have slowed the pandemic, their longevity is still unknown. Therefore, new orally administrable antiviral agents are highly demanded. Among various repurposed drugs, niclosamide (NIC) is the most potential one for various viral diseases such as COVID-19, SARS (severe acute respiratory syndrome), MERS (middle east respiratory syndrome), influenza, RSV (respiratory syncytial virus), etc. Since NIC cannot be effectively absorbed, a required plasma concentration for antiviral potency is hard to maintain, thereby restricting its entry into the infected cells. Such a 60-year-old bioavailability challenging issue has been overcome by engineering with MgO and hydroxypropyl methylcellulose (HPMC), forming hydrophilic NIC-MgO-HPMC, with improved intestinal permeability without altering NIC metabolism as confirmed by parallel artificial membrane permeability assay. The inhibitory effect on SARS-CoV-2  replication is confirmed in the Syrian hamster model to reduce lung injury. Clinical studies reveal that the bioavailability of NIC hybrid drug can go 4 times higher than the intact NIC. The phase II clinical trial shows a dose-dependent bioavailability of NIC from hybrid drug  suggesting its potential applicability as a game changer in achieving the much-anticipated endemic phase.

7.
Int J Mol Sci ; 24(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37240208

RESUMEN

Sepsis, characterized by an uncontrolled host inflammatory response to infections, remains a leading cause of death in critically ill patients worldwide. Sepsis-associated thrombocytopenia (SAT), a common disease in patients with sepsis, is an indicator of disease severity. Therefore, alleviating SAT is an important aspect of sepsis treatment; however, platelet transfusion is the only available treatment strategy for SAT. The pathogenesis of SAT involves increased platelet desialylation and activation. In this study, we investigated the effects of Myristica fragrans ethanol extract (MF) on sepsis and SAT. Desialylation and activation of platelets treated with sialidase and adenosine diphosphate (platelet agonist) were assessed using flow cytometry. The extract inhibited platelet desialylation and activation via inhibiting bacterial sialidase activity in washed platelets. Moreover, MF improved survival and reduced organ damage and inflammation in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. It also prevented platelet desialylation and activation via inhibiting circulating sialidase activity, while maintaining platelet count. Inhibition of platelet desialylation reduces hepatic Ashwell-Morell receptor-mediated platelet clearance, thereby reducing hepatic JAK2/STAT3 phosphorylation and thrombopoietin mRNA expression. This study lays a foundation for the development of plant-derived therapeutics for sepsis and SAT and provides insights into sialidase-inhibition-based sepsis treatment strategies.


Asunto(s)
Myristica , Sepsis , Trombocitopenia , Ratones , Animales , Plaquetas/metabolismo , Neuraminidasa/metabolismo , Trombocitopenia/tratamiento farmacológico , Trombocitopenia/etiología , Punciones/efectos adversos , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/metabolismo
8.
Curr Issues Mol Biol ; 45(3): 2284-2295, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36975517

RESUMEN

Although vaccines and antiviral drugs are available, influenza viruses continue to pose a significant threat to vulnerable populations globally. With the emergence of drug-resistant strains, there is a growing need for novel antiviral therapeutic approaches. We found that 18-hydroxyferruginol (1) and 18-oxoferruginol (2) isolated from Torreya nucifera exhibited strong anti-influenza activity, with 50% inhibitory concentration values of 13.6 and 18.3 µM against H1N1, 12.8 and 10.8 µM against H9N2, and 29.2 µM (only compound 2) against H3N2 in the post-treatment assay, respectively. During the viral replication stages, the two compounds demonstrated stronger inhibition of viral RNA and protein in the late stages (12-18 h) than in the early stages (3-6 h). Moreover, both compounds inhibited PI3K-Akt signaling, which participates in viral replication during the later stages of infection. The ERK signaling pathway is also related to viral replication and was substantially inhibited by the two compounds. In particular, the inhibition of PI3K-Akt signaling by these compounds inhibited viral replication by sabotaging influenza ribonucleoprotein nucleus-to-cytoplasm export. These data indicate that compounds 1 and 2 could potentially reduce viral RNA and viral protein levels by inhibiting the PI3K-Akt signaling pathway. Our results suggest that abietane diterpenoids isolated from T. nucifera may be potent antiviral candidates for new influenza therapies.

9.
Int Immunopharmacol ; 115: 109635, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36580758

RESUMEN

The therapeutic benefits of curcuminoids in various diseases have been extensively reported. However, little is known regarding their preventive effects on extensive immunosuppression. We investigated the immunoregulatory effects of a curcuminoid complex (CS/M), solubilized with stevioside, using a microwave-assisted method in a cyclophosphamide (CTX)-induced immunosuppressive mouse model and identified its new pharmacological benefits. CTX-treated mice showed a decreased number of innate cells, such as dendritic cells (DCs), neutrophils, and natural killer (NK) cells, and adaptive immune cells (CD4 and CD8 T cells) in the spleen. In addition, CTX administration decreased T cell activation, especially that of Th1 and CD8 T cells, whereas it increased Th2 and regulatory T (Treg) cell activations. Pre-exposure of CS/M to CTX-induced immunosuppressed mice restored the number of innate cells (DCs, neutrophils, and NK cells) and increased their activity (including the activity of macrophages). Exposure to CS/M also led to the superior restoration of T cell numbers, including Th1, activated CD8 T cells, and multifunctional T cells, suppressed by CTX, along with a decrease in Th2 and Treg cells. Furthermore,CTX-injected mice pre-exposed to CS/M were accompanied by an increase in the levels of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), which play an essential role against oxidative stress. Importantly, CS/M treatment significantly reduced viral loads in severe acute respiratory syndrome coronavirus2-infected hamsters and attenuated the gross pathology in the lungs. These results provide new insights into the immunological properties of CS/M in preventing extensive immunosuppression and offer new therapeutic opportunities against various cancers and infectious diseases caused by viruses and intracellular bacteria.


Asunto(s)
COVID-19 , Reconstitución Inmune , Animales , Ratones , Antioxidantes/uso terapéutico , SARS-CoV-2 , Terapia de Inmunosupresión/métodos
10.
Mar Drugs ; 20(12)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36547933

RESUMEN

A global health concern has emerged as a response to the recent SARS-CoV-2 pandemic. The identification and inhibition of drug targets of SARS-CoV-2 is a decisive obligation of scientists. In addition to the cell entry mechanism, SARS-CoV-2 expresses a complicated replication mechanism that provides excellent drug targets. Papain-like protease (PLpro) and 3-chymotrypsin-like protease (3CLpro) play a vital role in polyprotein processing, producing functional non-structural proteins essential for viral replication and survival in the host cell. Moreover, PLpro is employed by SARS-CoV-2 for reversing host immune responses. Therefore, if some particular compound has the potential to interfere with the proteolytic activities of 3CLpro and PLpro of SARS-CoV-2, it may be effective as a treatment or prophylaxis for COVID-19, reducing viral load, and reinstating innate immune responses. Thus, the present study aims to inhibit SARS-CoV-2 through 3CLpro and PLpro using marine natural products isolated from marine algae that contain numerous beneficial biological activities. Molecular docking analysis was utilized in the present study for the initial screening of selected natural products depending on their 3CLpro and PLpro structures. Based on this approach, Ishophloroglucin A (IPA), Dieckol, Eckmaxol, and Diphlorethohydroxycarmalol (DPHC) were isolated and used to perform in vitro evaluations. IPA presented remarkable inhibitory activity against interesting drug targets. Moreover, Dieckol, Eckmaxol, and DPHC also expressed significant potential as inhibitors. Finally, the results of the present study confirm the potential of IPA, Dieckol, Eckmaxol, and DPHC as inhibitors of SARS-CoV-2. To the best of our knowledge, this is the first study that assesses the use of marine natural products as a multifactorial approach against 3CLpro and PLpro of SARS-CoV-2.


Asunto(s)
Antivirales , COVID-19 , Polifenoles , SARS-CoV-2 , Replicación Viral , Humanos , Antivirales/química , Antivirales/aislamiento & purificación , Antivirales/farmacología , COVID-19/prevención & control , Simulación del Acoplamiento Molecular , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos , Polifenoles/química , Polifenoles/aislamiento & purificación , Polifenoles/farmacología
11.
Nat Commun ; 13(1): 7675, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36509737

RESUMEN

Although ocular manifestations are reported in patients with COVID-19, consensus on ocular tropism of SARS-CoV-2 is lacking. Here, we infect K18-hACE2 transgenic mice with SARS-CoV-2 using various routes. We observe ocular manifestation and retinal inflammation with production of pro-inflammatory cytokines in the eyes of intranasally (IN)-infected mice. Intratracheal (IT) infection results in dissemination of the virus from the lungs to the brain and eyes via trigeminal and optic nerves. Ocular and neuronal invasions are confirmed using intracerebral (IC) infection. Notably, the eye-dropped (ED) virus does not cause lung infection and becomes undetectable with time. Ocular and neurotropic distribution of the virus in vivo is evident in fluorescence imaging with an infectious clone of SARS-CoV-2-mCherry. The ocular tropic and neuroinvasive characteristics of SARS-CoV-2 are confirmed in wild-type Syrian hamsters. Our data can improve the understanding regarding viral transmission and clinical characteristics of SARS-CoV-2 and help in improving COVID-19 control procedures.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Ratones , Animales , Modelos Animales de Enfermedad , Ratones Transgénicos , Pulmón , Mesocricetus , Inflamación
12.
Sci Rep ; 12(1): 19659, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385278

RESUMEN

Biliary strictures can have several benign or malignant causes. We attempted to determine the usefulness of establishing a diagnosis using self-expandable metal stents (SEMS) in a prospective series of patients with suspected malignant biliary obstruction. Data of patients who underwent SEMS removal from August 2016 to December 2019 were collected. During this period, 55 patients underwent endobiliary biopsy and SEMS insertion and removal. Fifty-five consecutive patients (mean age, 69 years; range 53-90 years) were enrolled, and of these, 37 were male and 18 were female. A final diagnosis was established using biopsy specimens in 37 cases (67.3%) and surgical specimens in 6 cases (10.9%), with 12 cases (21.8%) diagnosed on radiological follow-up. The final diagnoses included malignancy in 34 cases (61.8%) and benign stricture in 21 cases (38.2%). Endobiliary biopsy had a sensitivity and specificity of 44.1% and 95.2%, whereas SEMS cytology had a sensitivity and specificity of 52.9% and 100%, respectively. Combining endobiliary biopsy and/or SEMS cytology yielded a sensitivity and specificity of 73.5% and 95.2%, respectively. (1) The use of biopsy results alone as a diagnostic tool yielded an area under the receiver operating characteristic curve (AUC) of 0.70 (0.60-0.79). (2) The addition of SEMS to the biopsy results yielded an AUC of 0.86 (0.78-0.94). (3) The addition of CA 19-9 levels to the biopsy results yielded an AUC of 0.81 (0.71-0.94). (4) Combining the endobiliary biopsy results, SEMS tissues, and CA 19-9 levels yielded the best diagnostic accuracy, with an AUC of 0.90 (0.83-0.98). Detection of biliary obstruction using the combination strategy was better than the diagnostic results based on biopsy alone according to recent 3-year data. Our study suggested that SEMS removal could help establish a diagnosis of suspected malignant biliary obstruction.


Asunto(s)
Colestasis , Neoplasias , Stents Metálicos Autoexpandibles , Humanos , Masculino , Femenino , Anciano , Constricción Patológica/etiología , Colestasis/diagnóstico , Colestasis/etiología , Colestasis/cirugía , Stents Metálicos Autoexpandibles/efectos adversos , Neoplasias/complicaciones , Stents/efectos adversos
13.
Signal Transduct Target Ther ; 7(1): 367, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253361

RESUMEN

The biosynthesis of host lipids and/or lipid droplets (LDs) has been studied extensively as a putative therapeutic target in diverse viral infections. However, directly targeting the LD lipolytic catabolism in virus-infected cells has not been widely investigated. Here, we show the linkage of the LD-associated lipase activation to the breakdown of LDs for the generation of free fatty acids (FFAs) at the late stage of diverse RNA viral infections, which represents a broad-spectrum antiviral target. Dysfunction of membrane transporter systems due to virus-induced cell injury results in intracellular malnutrition at the late stage of infection, thereby making the virus more dependent on the FFAs generated from LD storage for viral morphogenesis and as a source of energy. The replication of SARS-CoV-2 and influenza A virus (IAV), which is suppressed by the treatment with LD-associated lipases inhibitors, is rescued by supplementation with FFAs. The administration of lipase inhibitors, either individually or in a combination with virus-targeting drugs, protects mice from lethal IAV infection and mitigates severe lung lesions in SARS-CoV-2-infected hamsters. Moreover, the lipase inhibitors significantly reduce proinflammatory cytokine levels in the lungs of SARS-CoV-2- and IAV-challenged animals, a cause of a cytokine storm important for the critical infection or mortality of COVID-19 and IAV patients. In conclusion, the results reveal that lipase-mediated intracellular LD lipolysis is commonly exploited to facilitate RNA virus replication and furthermore suggest that pharmacological inhibitors of LD-associated lipases could be used to curb current COVID-19- and future pandemic outbreaks of potentially troublesome RNA virus infection in humans.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Lipólisis , Infecciones por Orthomyxoviridae , Animales , Humanos , Ratones , Antivirales/farmacología , Citocinas , Ácidos Grasos no Esterificados , Virus de la Influenza A , Lipasa , Proteínas de Transporte de Membrana , ARN , SARS-CoV-2 , Infecciones por Orthomyxoviridae/tratamiento farmacológico
14.
Cells ; 11(18)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36139376

RESUMEN

Plant-derived extracellular vesicles, (EVs), have recently gained attention as potential therapeutic candidates. However, the varying properties of plants that are dependent on their growth conditions, and the unsustainable production of plant-derived EVs hinder drug development. Herein, we analyzed the secondary metabolites of Aster yomena callus-derived EVs (AYC-EVs) obtained via plant tissue cultures and performed an immune functional assay to assess the potential therapeutic effects of AYC-EVs against inflammatory diseases. AYC-EVs, approximately 225 nm in size, were isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation. Metabolomic analysis, using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS), revealed that AYC-EVs contained 17 major metabolites. AYC-EVs inhibited the phenotypic and functional maturation of LPS-treated dendritic cells (DCs). Furthermore, LPS-treated DCs exposed to AYC-EVs showed decreased immunostimulatory capacity during induction of CD4+ and CD8+ T-cell proliferation and activation. AYC-EVs inhibited T-cell reactions associated with the etiology of asthma in asthmatic mouse models and improved various symptoms of asthma. This regulatory effect of AYC-EVs resembled that of dexamethasone, which is currently used to treat inflammatory diseases. These results provide a foundation for the development of plant-derived therapeutic agents for the treatment of various inflammatory diseases, as well as providing an insight into the possible mechanisms of action of AYC-EVs.


Asunto(s)
Asma , Vesículas Extracelulares , Animales , Proliferación Celular , Dexametasona/farmacología , Dexametasona/uso terapéutico , Vesículas Extracelulares/fisiología , Lipopolisacáridos/farmacología , Ratones
15.
Ann Surg Treat Res ; 102(6): 323-327, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35800992

RESUMEN

Purpose: The incidence of patients requiring pancreaticoduodenectomy (PD) following any type of gastrectomy is increasing as the population of elderly patients is increasing, especially in endemic areas of gastric cancer such as Korea. All types of gastrectomy can be categorized as subtotal gastrectomy with Billroth I (BI), Billroth II (BII), and total gastrectomy with Roux-en-Y anastomosis. In this paper, we reviewed our experiences of PD for patients who previously underwent gastrectomy. Methods: We reviewed the medical records of the patients who underwent PD following any type of gastrectomy among 505 consecutive patients who underwent PD in a single institution between 2011 and 2020 retrospectively. Results: There were 13 patients who had undergone gastrectomy including 7 patients of BI, 1 patient of BII, and 5 patients of total gastrectomy. For all 7 patients of BI, the reconstruction was not different from conventional PD. For the 1 patient of BII, previous gastrojejunal anastomosis was preserved and reconstruction was performed in Roux-en-Y method. For the 5 patients with total gastrectomy, 2 different types of reconstruction were performed. In one patient, we removed the remaining jejunum with the specimen, and reconstruction was performed. For the other 4 patients, the remaining jejunum, distal to the Treitz ligament, was preserved and was utilized for anastomosis. Surgeries for all patients were uneventful. Conclusion: PD following any type of gastrectomy can be safe. Especially, if the length of remained jejunum is long enough, its utilization for the reconstruction can be an appropriate option.

16.
ACS Nano ; 16(7): 11300-11314, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35735410

RESUMEN

Coronavirus disease (COVID-19) has affected people for over two years. Moreover, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has raised concerns regarding its accurate diagnosis. Here, we report a colorimetric DNAzyme reaction triggered by loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR), referred to as DAMPR assay for detecting SARS-CoV-2 and variants genes with attomolar sensitivity within an hour. The CRISPR-associated protein 9 (Cas9) system eliminated false-positive signals of LAMP products, improving the accuracy of DAMPR assay. Further, we fabricated a portable DAMPR assay system using a three-dimensional printing technique and developed a machine learning (ML)-based smartphone application to routinely check diagnostic results of SARS-CoV-2 and variants. Among blind tests of 136 clinical samples, the proposed system successfully diagnosed COVID-19 patients with a clinical sensitivity and specificity of 100% each. More importantly, the D614G (variant-common), T478K (delta-specific), and A67V (omicron-specific) mutations of the SARS-CoV-2 S gene were detected selectively, enabling the diagnosis of 70 SARS-CoV-2 delta or omicron variant patients. The DAMPR assay system is expected to be employed for on-site, rapid, accurate detection of SARS-CoV-2 and its variants gene and employed in the diagnosis of various infectious diseases.


Asunto(s)
COVID-19 , ADN Catalítico , Humanos , SARS-CoV-2/genética , ADN Catalítico/genética , COVID-19/diagnóstico , Teléfono Inteligente , Colorimetría , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Sensibilidad y Especificidad
17.
Ann Surg Treat Res ; 102(3): 139-146, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35317358

RESUMEN

Purpose: Despite the many efforts to overcome postoperative complications, pancreaticoduodenectomy (PD) is still accompanied with considerable concerns of lethal complications. The clinical factors are known to affect postoperative outcomes such as diameter of pancreatic duct, texture of pancreas, and comorbidity of the patients are mostly uncorrectable. Thus, investigation for correctable risk factors is required. Recently, perioperative fluid volume was reported to be associated with complications after PD. This study aims to determine the relationship between postoperative fluid balance and surgical outcome after open PD. Methods: We reviewed, retrospectively, 172 consecutive patients who underwent open PD in a single institution between 2015 and 2019. The status of perioperative fluid balance 2 days after surgery and clinical factors were investigated to determine the association with postoperative outcome including postoperative pancreatic fistula (POPF). According to postoperative fluid balance, patients were divided into high- and low-balance groups, and clinical features and surgical outcomes were compared between both groups. Multivariate analysis were performed to identify risk factors for POPF. Results: The percentage of morbidity and the incidence of POPF were higher in the high-balance group compared to the low-balance group (61.6% vs. 37.2%, P = 0.001; 15.1% vs. 3.5%, P = 0.009). High postoperative fluid balance and the presence cardiovascular disease were correlated with POPF on multivariate analysis (odds ratio [OR], 4.574; 95% confidence interval [CI], 1.229-17.029; P = 0.023 and OR, 3.517; 95% CI, 1.209-12.017; P = 0.045). Conclusion: Higher amount of postoperative fluid balance and the presence of cardiovascular disease are associated with POPF after PD.

18.
Biosens Bioelectron ; 202: 114008, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35086030

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected humans worldwide for over a year now. Although various tests have been developed for the detection of SARS-CoV-2, advanced sensing methods are required for the diagnosis, screening, and surveillance of coronavirus disease 2019 (COVID-19). Here, we report a surface-enhanced Raman scattering (SERS)-based immunoassay involving an antibody pair, SERS-active hollow Au nanoparticles (NPs), and magnetic beads for the detection of SARS-CoV-2. The selected antibody pair against the SARS-CoV-2 antigen, along with the magnetic beads, facilitates the accurate direct detection of the virus. The hollow Au NPs exhibit strong, reproducible SERS signals, allowing sensitive quantitative detection of SARS-CoV-2. This assay had detection limits of 2.56 fg/mL for the SARS-CoV-2 antigen and 3.4 plaque-forming units/mL for the SARS-CoV-2 lysates. Furthermore, it facilitated the identification of SARS-CoV-2 in human nasopharyngeal aspirates and diagnosis of COVID-19 within 30 min using a portable Raman device. Thus, this assay can be potentially used for the diagnosis and prevention of COVID-19.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Nanopartículas del Metal , Técnicas Biosensibles/métodos , Oro , Humanos , Inmunoensayo/métodos , SARS-CoV-2 , Espectrometría Raman
19.
Ann Hepatobiliary Pancreat Surg ; 25(3): 445-449, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34402451

RESUMEN

Metastatic melanoma of the gallbladder is extremely rare. It has a poor prognosis. Its optimal treatment remains unclear. Surgical resection is generally considered the mainstay of treatment. However, there are no standards to guide the choice between open surgery and laparoscopic surgery. Criteria for the extent of surgical dissection have not been established yet either. We report a patient diagnosed with gallbladder cancer who underwent extended cholecystectomy but had metastatic melanoma at the final biopsy. We reviewed the literature on the treatment of metastatic melanoma in the gallbladder and compared it with our case to determine a treatment strategy.

20.
ACS Sens ; 6(6): 2378-2385, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34019385

RESUMEN

We developed a new surface-enhanced Raman scattering (SERS)-based aptasensor platform capable of quantifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lysates with a high sensitivity. In this study, a spike protein deoxyribonucleic acid (DNA) aptamer was used as a receptor, and a self-grown Au nanopopcorn surface was used as a SERS detection substrate for the sensible detection of SARS-CoV-2. A quantitative analysis of the SARS-CoV-2 lysate was performed by monitoring the change in the SERS peak intensity caused by the new binding between the aptamer DNA released from the Au nanopopcorn surface and the spike protein in the SARS-CoV-2 virion. This technique enables detecting SARS-CoV-2 with a limit of detection (LoD) of less than 10 PFU/mL within 15 min. The results of this study demonstrate the possibility of a clinical application that can dramatically improve the detection limit and accuracy of the currently commercialized SARS-CoV-2 immunodiagnostic kit.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Espectrometría Raman
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...