Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Chem Sci ; 15(31): 12361-12368, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39118616

RESUMEN

This paper introduces the design concept of a dual-functional molecular dyad tailored specifically for solution-processable organic light-emitting diodes (OLEDs). Cy-tmCPBN, characterized by an asymmetric molecular dyad structure, integrates a host unit (tmCP) and a multiple-resonance (MR) emitter (CzBN) via a non-conjugated cyclohexane linker. Cy-tmCPBN exhibited efficient intramolecular energy transfers (EnTs) from tmCP to the CzBN unit, as confirmed by time-resolved fluorescence experiments. The fluorescence lifetime of the tmCP unit was approximately three times shorter in a highly diluted solution of Cy-tmCPBN than in a mixed solution of Cy-tmCP and Cy-CzBN. In addition, Cy-tmCPBN exhibited excellent solubility and film-forming ability, making it suitable for solution processing. Notably, OLEDs utilizing Cy-tmCPBN achieved over twice the brightness and improved external quantum efficiency of 12.3% compared to OLEDs using Cy-CzBN with the same concentration of CzBN in the emitting layer. The improved OLED performance can be explained by the increased EnT efficiency from Cy-tmCP to Cy-tmCPBN and the intramolecular EnT within Cy-tmCPBN. In our dual-functional dyad, incorporating both host and emitter units in an asymmetric molecular dyad structure, we induced a positive synergy effect with the host moiety, enhancing OLED performance through intramolecular EnT.

2.
Angew Chem Int Ed Engl ; : e202408820, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058627

RESUMEN

A general phase-transfer catalyst (PTC) mediated enantioselective alkylation of N-acylsulfenamides is reported. Essential to achieving high selectivity was the use of the triethylacetyl sulfenamide protecting group along with aqueous KOH as the base under biphasic aqueous conditions to enable the reaction to be performed at -40 °C. With these key parameters, enantiomeric ratios up to 97.5:2.5 at the newly generated chiral sulfur center were achieved with an inexpensive cinchona alkaloid derived PTC. Broad scope and excellent functional group compatibility was observed for a variety of S-(hetero)aryl and branched and unbranched S-alkyl sulfenamides. Moreover, to achieve high selectivity for the opposite enantiomer, a pseudoenantiomeric catalyst was designed and synthesized from inexpensive cinchonidine. Given that sulfoximines are a bioactive pharmacophore of ever-increasing interest, selected product sulfilimines were oxidized to the corresponding sulfoximines with subsequent reductive cleavage affording the free-NH sulfoximines in high yields. The utility of the disclosed method was further demonstrated by the efficient asymmetric synthesis of atuveciclib, a phase I clinical candidate for which only chiral HPLC separation had previously been reported for isolation of the desired (R)-sulfoximine stereoisomer.

3.
ACS Appl Mater Interfaces ; 16(13): 16553-16562, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570940

RESUMEN

In this study, two novel multiple resonance (MR) emitters, DtCzBN and Cy-DtCzBN, were designed based on the well-known BCzBN structure and synthesized for narrowband solution-processed organic light-emitting diodes (OLEDs). Cy-DtCzBN possesses a dimeric V-shaped structure formed by coupling two individual DtCzBN units via a nonconjugated cyclohexane linker. When compared with DtCzBN, Cy-DtCzBN, as a medium-sized molecule, was found to maintain the optical and photophysical properties of the corresponding monomeric unit, DtCzBN, but exhibits high thermal stability, excellent solubility, and good film-forming ability. Additionally, solution-processed OLEDs were fabricated by using two sets of molecules: one set of small molecular hosts and emitters (i.e., mCP and DtCzBN) and the other set of medium-sized molecular hosts and emitters (i.e., Cy-mCP and Cy-DtCzBN). Notably, devices using medium-sized molecular hosts and emitters exhibited similar optical and photophysical properties but showed significantly improved reproducibility and thermal stability compared with those based on small molecular hosts and emitters. Our current study provides some insights into molecular design strategies for thermally stable hosts and emitters, which are highly suitable for solution-processed OLEDs.

4.
ACS Appl Mater Interfaces ; 15(48): 56106-56115, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37994594

RESUMEN

In solution-processed organic light-emitting diodes (OLEDs), achieving high color purity and efficiency is as important as that in vacuum processes. Emitters suitable for solution processing must have excellent solubility in organic solvents, high molecular weight, and compatibility with the host materials. In this study, we synthesized a deep-blue emitter that satisfies the above conditions by introducing a 1,4-bis(indolo[3,2,1-jk]carbazol-2-yl)benzene-based planar emitting core (DICz) structure and four 3,6-di-tert-butyl-9-phenyl-9H-carbazole (tCz) peripheral units, namely, 4tCz-DICz. A comparative compound, 4Hex-DICz, incorporating hexyl phenyl groups was synthesized. In contrast to 4Hex-DICz, 4tCz-DICz exhibited exceptional solubility in organic solvents and superior film-forming properties attributed to the presence of tCz units. Additionally, in the film state, the effective encapsulation of the emitting core (DICz) by the tCz units in 4tCz-DICz helps prevent undesirable molecular aggregation. The solution-processed OLEDs employing the CH-2D1 film, doped with 5 wt % 4tCz-DICz as the emitting layer, exhibited a deep-blue emission at 424 nm, characterized by a narrow bandwidth of 22 nm, and achieved a maximum external quantum efficiency (EQE) of approximately 4.0%. In contrast, the 4Hex-DICz-based device demonstrated an EQE of 2.91%. Consequently, we have successfully demonstrated that the introduction of four bulky tCz units into the DICz core is a promising molecular design strategy for the development of soluble indolocarbazole-based emitters, especially those used in high-performance deep-blue fluorescent OLEDs.

5.
J Org Chem ; 88(18): 13315-13326, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37668242

RESUMEN

The site-selective modification of quinazolinone as a privileged bicyclic N-heterocycle is an attractive topic in medicinal chemistry and material science. We herein report the ruthenium(II)-catalyzed C-H allylation of 2-aryl quinazolinones with 2-methylidene cyclic carbonate. In addition, tandem C-H allylation and annulation are achieved under rhodium(III) catalysis, resulting in the formation of tetracyclic quinazolinones including a tertiary carbon center. Post-transformations of the synthesized products demonstrate the potential of the developed methodology. A series of mechanistic investigations were also performed.

6.
ACS Appl Mater Interfaces ; 15(23): 28277-28287, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37256769

RESUMEN

Herein, a novel core molecule for V-shaped host molecules was synthesized, wherein two carbazoles were directly linked to cyclohexane. Cy-mCP and Cy-mCBP hosts were also successfully prepared for solution-processable thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). The Cy-mCP and Cy-mCBP molecules contained a cyclohexane linker directly linked to two small molecular hosts (mCP and mCBP), exhibiting twice the molecular weight while maintaining the basic properties of a single host molecule with improved film-forming ability and solubility in organic solvents. These host materials showed superior thermal stability and high glass transition temperatures compared to lower molecular weight hosts. Green TADF-OLEDs were prepared using the two host materials and 2,4,5,6-tetra(3,6-di-tert-butylcarbazol-9-yl)-1,3-dicyanobenzene (t4CzIPN) emitter, achieving device efficiencies similar to that of a low-molecular-weight host. However, after the incorporation of a V-shaped host, superior characteristics were observed in terms of the thermal stability and operational stability of the device. The synthesis of V-shaped molecules by directly linking two carbazoles to a cyclohexane linker is promising for the development of different hosts for solution-processable OLEDs.

7.
ACS Appl Mater Interfaces ; 15(16): 20266-20277, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37043738

RESUMEN

The recent breakthrough in power conversion efficiencies (PCEs) of polymer solar cells (PSCs) that contain an active layer of a ternary system has achieved values of 18-19%; this has sparked interest for further research. However, this system has difficulties in optimizing the composition and controlling the interaction between the three active materials. In this study, we investigated the use of a donor1 (D1)-donor2 (D2) conjugated block copolymer (CBP), PM6-b-TT, to replace the physical blend of two donors. PM6-b-TT, which exhibits an extended absorption range, was synthesized by covalently bonding PM6, a medium-band gap polymer, with PBDT-TT, a wide-band gap polymer. The blend films containing PM6-b-TT and Y6-BO acceptor, demonstrated excellent crystallinity and a film morphology favorable for PSCs. The corresponding pseudo-ternary PSC exhibited significantly higher PCE and thermal stability than the PM6:PBDT-TT-based ternary device. This study unambiguously demonstrates that the novel D1-D2 CBP strategy, combined with the conventional binary and ternary system advantages, is a promising material production strategy that can boost the performance of future PSCs.

8.
Artículo en Inglés | MEDLINE | ID: mdl-36780202

RESUMEN

To obtain high-efficiency solution-processed organic light-emitting diodes (OLEDs), a hole transport material (HTM) capable of solution processing with excellent charge transport properties is required. In this study, a new vinyl polymer (PmCP) containing hole-transporting 1,3-di(9H-carbazol-9-yl)benzene (mCP) in the side chain was successfully synthesized via radical polymerization. PmCP showed good film-forming ability and thermal stability. Moreover, PmCP has a higher triplet energy value and hole mobility than poly(N-vinylcarbazole) (PVK) used as a reference HTM, which can be applied as a hole transport layer (HTL) in thermally activated delayed fluorescence (TADF) OLEDs, providing green and blue emissions. PmCP-based solution-processable TADF-OLEDs containing green- and blue-emitting layers were easily fabricated without damaging the lower HTL while using ethyl acetate as an orthogonal solvent. The corresponding OLEDs possess high external quantum efficiencies of 29.60% and 11.00% for the green- and blue-emitting devices, respectively. They show superior performances compared to PVK-based devices used as a reference. It was confirmed that PmCP as a solution-processable HTM can replace PVK and is universally applicable to both green- and blue-emitting devices.

9.
ACS Appl Mater Interfaces ; 14(31): 35969-35977, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35894557

RESUMEN

Recently, various hosts and emitters for solution-processable thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs) have been developed. However, a few studies have been conducted on hole transport materials (HTMs) with differentiated solubility characteristics for manufacturing multilayer OLEDs using a solution process. Here, three new hole transport (HT) styrene polymers, PICz, PPBCz, and PTPCz, were synthesized by radical polymerization. Each of the polymers exhibited increases in their highest occupied molecular orbital (HOMO) levels and better hole-transporting abilities than poly(9-vinylcarbazole) (PVK) as a reference HT polymer. Furthermore, the three HT polymers exhibited different solubilities in toluene. Therefore, it was not possible to use a toluene solution to prepare the emitting layer (EML). To overcome this problem, ethyl acetate (EA), in which the three HT polymers are insoluble, was used as an orthogonal solvent to prepare an EML solution. In EA-solution-processed green-emitting TADF-OLEDs, the three HT-polymer-based devices displayed somewhat low turn-on voltages of 2.8 V and high external quantum efficiencies (EQEs) of >23%. These values are superior to those of a device with a PVK-HT layer. In addition, the devices manufactured with the EA solution showed high-performance reproducibility owing to the stable formation of each layer. In this study, we removed the HTM solubility constraint by dramatically changing the solvent for preparing the EML solution and provided an efficient strategy for the fabrication of OLED devices via solution processes in the future.

10.
ACS Appl Mater Interfaces ; 14(30): 34909-34917, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35839207

RESUMEN

Silver nanowire (AgNW) electrodes are among the most essential flexible transparent electrodes (FTEs) emerging as promising alternatives to brittle indium tin oxide (ITO) electrodes. The polymer comprising the plastic substrate to which the AgNWs are applied must also satisfy the mechanical requirements of the final device and withstand the device processing conditions. However, AgNW-based FTEs have some limitations, such as poor adhesion to coated plastic substrates, surface roughness, and difficulty in patterning. This study demonstrates a new strategy for creating AgNW-based patterned flexible poly(ethylene 2,6-naphthalate) (PEN)-based electrodes with appreciable optical and electrical properties. Introducing poly(2-hydroxyethyl methacrylate) on the PEN substrate enhanced the adhesion between the substrate and AgNWs and improved the dispersibility of the AgNWs. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and a small amount of 2,4-hexadiyne-1,6-diol as a photosensitizer were coated onto the AgNW layer to improve the surface roughness and achieve an effective electrode pattern. By varying the AgNW concentration, we could tune the density and thickness of the AgNWs to optimize the sheet resistance and transmittance. Optimized AgNWs with a sheet resistance of 22.6 Ω/□ and transmittance of 92.3% at 550 nm were achieved. A polymer solar cell (PSC) was fabricated to evaluate the characteristics of the device employing the flexible electrodes. This PSC showed not only a high power conversion efficiency of 11.20%, similar to that of ITO-based devices, but also excellent mechanical stability, which is difficult to achieve in ITO-based flexible devices.

11.
Chem Commun (Camb) ; 58(50): 7078-7081, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35662294

RESUMEN

The C3-selective homodimerization of quinoxalinones is described. A C3-sp2 carbanion species generated through deprotonation of quinoxalinone using potassium tert-butoxide (KOtBu) transfers an electron (single electron transfer mechanism) to a second quinoxalinone, affording a radical-anion intermediate. The radical scavenging and electron paramagnetic resonance (EPR) experiments support the plausible radical reaction pathway. A mild reaction temperature and a short reaction time were attained under cost-effective conditions, which reveal the amenability of this protocol to pharmaceutical and chemical industries.


Asunto(s)
Electrones , Aniones , Dimerización , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón
12.
ACS Appl Mater Interfaces ; 13(51): 61463-61472, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34913342

RESUMEN

Silver nanowires (AgNWs) are one of the important flexible electrode material candidates that can replace brittle indium tin oxide (ITO). In this work, we demonstrated novel patterned sandwich-type AgNW-based transparent electrodes easily prepared using the photolithography method for application in flexible devices. A cross-linked underlayer was introduced to increase the adhesion properties between a poly(ethylene terephthalate) substrate and AgNWs, and as a result, a uniform AgNW layer was easily deposited. Finally, the AgNW layer could be easily patterned by introducing a photocross-linkable upper layer without lift-off, dry transfer, and removal methods. A mixture of poly(sodium-4-styrene sulfonate) (PSS-Na+) and 2,4-hexadiyne-1,6-diol (HDD), which is a component of the upper layer, exhibited good cross-linking properties as well as excellent adhesion to the AgNW layer. Through the above method, it was possible to easily fabricate a patterned electrode with smooth surface morphology. Moreover, AgNW-based patterned electrodes exhibit good optical and electrical properties (Rs = 29.8 Ω/□, T550 nm = 94.6%), making them suitable for optoelectronic devices. Flexible polymer solar cells (PSCs) using patterned AgNW electrodes showed a high power conversion efficiency of over 10%, which is comparable to that of PSCs using rigid ITO electrodes. In addition, the high mechanical stability of AgNW-based PSCs was confirmed by bending experiments.

13.
Polymers (Basel) ; 13(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34833204

RESUMEN

This study demonstrated the use of a thermally crosslinked polyimide (PI) for the liquid crystal (LC) alignment layer of an LC display (LCD) cell. Polyamic acid was prepared using 4,4'-oxydianiline (ODA) and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA). The 6FDA-ODA-based polyimide (PI) prepared by the thermal cyclic dehydration of the polyamic acid (PAA) was soluble in various polar solvents. After forming a thin film by mixing trifunctional epoxide [4-(oxiran-2-ylmethoxy)-N,N-bis(oxiran-2-ylmethyl)aniline] with the 6FDA-ODA-based PAA, it was confirmed that thermal curing at -110 °C caused an epoxy ring opening reaction, which could result in the formation of a networked polyimide not soluble in tetrahydrofuran. The crosslinked PI film showed a higher rigidity than the neat PI films, as measured by the elastic modulus. Furthermore, based on a dynamic mechanical analysis of the neat PI and crosslinked PI films, the glass transition temperatures (Tgs) were 217 and 339 °C, respectively, which provided further evidence of the formation of crosslinking by the addition of the epoxy reagent. After mechanical rubbing using these two PI films, an LC cell was fabricated using an anisotropic PI film as an LC alignment film. LC cells with crosslinked PI layers showed a high voltage holding ratio and low residual direct current voltage. This suggests that the crosslinked PI has good potential for use as an LC alignment layer material in advanced LCD technologies that require high performance and reliability.

14.
Chem Commun (Camb) ; 57(83): 10947-10950, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34604876

RESUMEN

The rhodium(III)-catalyzed spiroannulation reaction between N-aryl indazol-3-ols and maleimides is described herein. The developed method is showcased by the construction of spirosuccinimides using bioactive molecule-linked and chemical probe-linked maleimides. Combined mechanistic investigations including the determination of an isolable rhodacycle complex aided the elucidation of a plausible reaction mechanism.

15.
ACS Appl Mater Interfaces ; 13(14): 16754-16765, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33793188

RESUMEN

Crosslinkable polymers have attracted tremendous attention in various fields of science and technology, owing to their potential utilization in applications requiring dimensional and morphological stability under thermal and mechanical stress. In this study, random terpolymers were successfully synthesized by introducing thiophene-based monomers bearing vinyl functional groups in the side-chain of the polymer donor (PBDBT-BV20) and polymer acceptor (N2200-TV10) structures. The physical properties of the blend films of PBDBT-BV20 and N2200-TV10 before and after thermal crosslinking were extensively investigated and compared to those of the homogeneous individual polymer films. The results revealed that a network polymer with donor and acceptor polymer chains, which can lock the internal morphology, could be achieved by inducing crosslinking between the vinyl groups in the mixed state of PBDBT-BV20 and N2200-TV10. In addition, the power conversion efficiency (PCE) of the polymer solar cells (PSCs) containing the blend films that were crosslinked by a two-step thermal annealing process was improved. The enhanced PCE could be attributed to the individual crystallization of PBDBT-BV20 and N2200-TV10 in the blend phase at 120 °C and then thermal crosslinking at 140 °C. In addition, the PSCs with the crosslinked blend film exhibited an excellent shelf-life of over 1200 h and a thermally stable PCE. Furthermore, the crosslinked blend film exhibited excellent mechanical stability under bending stress in flexible PSCs using plastic substrates.

16.
ACS Appl Mater Interfaces ; 13(11): 13487-13498, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33710873

RESUMEN

Conjugated random terpolymers, PJ-25, PJ-50, and PJ-75 were successfully synthesized from three different monomers. Fluorine-substituted benzotriazole (2F-BTA) was incorporated into 4,8-bis(4-chlorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDT-T-Cl) and a 1,3-bis(4-(2-ethylhexyl)thiophen-2-yl)-5,7-bis(2-alkyl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione (BDD)-based alternating copolymer PM7 as a third monomeric unit. The solubility of the random terpolymers in nonhalogenated solvents increased with the number of 2F-BTA units in PM7. The random terpolymers were mixed with 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6,7-difluoro)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IT-4F) to fabricate organic photovoltaic (OPV) cells. Among the three terpolymers and two related binary copolymers (e.g., PM7 and J52-Cl), outdoor photovoltaic (PV) cells (AM 1.5G) based on the PJ-50:IT-4F blend showed a high power conversion efficiency (PCE) of 11.34%. In addition, PJ-50 was employed as a donor in indoor PV (IPV) cells and was blended with nonfullerene acceptors, which have different absorption ranges. Among them, the PJ-50:IT-4F-based IPV device had the highest PCE of 17.41% with a Jsc of 54.75 µA cm-2 and an FF of 0.77 under 160 µW cm-2 light-emitting diode (LED) light. The terpolymer introduced in this study can be regarded as a promising material for the fabrication of outdoor PV and IPV cells with excellent performance involving the use of an eco-friendly solvent.

17.
Angew Chem Int Ed Engl ; 60(1): 191-196, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32930471

RESUMEN

The direct methylation of N-heterocycles is an important transformation for the advancement of pharmaceuticals, agrochemicals, functional materials, and other chemical entities. Herein, the unprecedented C(sp2 )-H methylation of iminoamido heterocycles as nucleoside base analogues is described. Notably, trimethylsulfoxonium salt was employed as a methylating agent under aqueous conditions. A wide substrate scope and excellent level of functional-group tolerance were attained. Moreover, this method can be readily applied to the site-selective methylation of azauracil nucleosides. The feasibility of gram-scale reactions and various transformations of the products highlight the synthetic potential of the developed method. Combined deuterium-labeling experiments aided the elucidation of a plausible reaction mechanism.

18.
Org Lett ; 22(22): 9004-9009, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33164525

RESUMEN

A redox-neutral C2-selective methylation of heterocyclic N-oxides with sulfonium ylides is described herein. This report presents unprecedented findings for the utility of sulfonium ylides as the methylation source of N-heterocycles beyond the Corey-Chaykovsky reaction. Intriguingly, pyrrolidine plays a significant role in minimizing the reductive C2-methylation process. This method is characterized by its mild conditions, simplicity, and excellent site selectivity. The applicability of the developed protocol is showcased by the late-stage methylation and sequential transformations of complex drug molecules.

19.
Front Chem ; 8: 605403, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33251187

RESUMEN

The photophysical properties of donor (D)-acceptor (A) polymers were studied by designing two types of polymers, (D-σ-A) n and (D-π-A) n , with non-conjugated alkyl (sp 3) and π-conjugated (sp 2) linkers using π-extended donor and acceptor monomers that exhibit planar A-D-A structures. The non-conjugated alkyl linker provides structural flexibility to the (D-σ-A) n polymers, while the π-conjugated linker retains the rigid structure of the (D-π-A) n polymers. Photoinduced energy transfer occurs from the large donor to acceptor units in both polymers. However, the photoinduced energy transfer dynamics are found to be dependent on the conformation of the polymers, where the difference is dictated by the types of linkers between the donor and acceptor units. In solution, intramolecular energy transfer is relatively favorable for the (D-σ-A) n polymers with flexible linkers that allow the donor and acceptor units to be proximally located in the polymers. On the other hand, intermolecular (or interchain) energy transfer is dominant in the two polymer films because the π-extended donor and acceptor units in polymers are closely packed. The structural flexibility of the linkers between the donor and acceptor repeating units in the polymers affects the efficiency of energy transfer between the donor and acceptor units and the overall photophysical properties of the polymers.

20.
ACS Appl Mater Interfaces ; 12(45): 50860-50869, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33119259

RESUMEN

Particulate matter (PM) is an essential indicator to evaluate air pollution, threatening human health. Although PM control could be achieved by using a variety of polymeric materials, identifying effective and green materials remains elusive in dust control technology. Here, we have employed environmentally friendly cellulose modified by methyl side groups, such as methylcellulose (MC)-based polymers, and evaluated their PM reduction efficiency when utilized in active and passive dust control methods, such as dust suppressants and air filters, respectively. When 25 m/s wind was applied on soil treated by MC-based polymers, PM emissions were reduced 95% or 85% lower than the soil treated by only water or the other cellulose without methyl side groups. The MC-based polymer was also effectively suppressed mineral dust from a local copper mine in Arizona with approximately 50 times lower amounts than a synthetic polymer containing methyl side groups. Furthermore, when MC-based polymers have deposited on filters of commercial face masks, the average filtration efficiency improved to greater than 99% while maintaining airflow resistance. Our results present that environmentally friendly MC-based polymers can act as dust binders that effectively agglomerate air pollutants, preventing the PM emission from dust sources and the inhalation after being suspended in the air; thus, labeling them as essential materials for advanced active and passive dust control technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA