Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 68(18)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37579768

RESUMEN

Time-of-flight (TOF) positron emission tomography (PET) detectors improve the signal-to-noise ratio of PET images by limiting the position of the generation of two 511 keV gamma-rays in space using the arrival time difference between the two photons. Unfortunately, bismuth germanate (BGO), widely used in conventional PET detectors, was limited as a TOF PET scintillator due to the relatively slow decay time of the scintillation photons. However, prompt Cerenkov light in BGO has been identified in addition to scintillation photons. Using Cerenkov photons for timing has significantly improved the coincidence timing resolution (CTR) of BGO. Based on this, further research on improving the CTR for a BGO-based TOF PET system is being actively conducted. Wrapping materials for BGO pixels have primarily employed white reflectors to most efficiently collect scintillation light. White reflectors have customarily been used as reflectors for BGO pixels even after Cerenkov light began to be utilized for timing calculations in pixel-level experiments. However, when the arrival-time differences of the two 511 keV annihilations photons were measured with pure Cerenkov radiators, painting the lateral sides of the radiators black can improve CTR by suppressing the reflection of Cerenkov photons. The use of BGO for TOF PET detectors requires simultaneously minimizing scintillation loss for good energy information and suppressing reflected Cerenkov photons for better timing performance. Thus, reflectors for BGO pixels should be optimized for better timing and energy performance. In this study, colored polytetrafluoroethylene (PTFE) tapes with discontinuous reflectance values at specific wavelengths were applied as a BGO reflector. We hypothesized that CTR could be enhanced by selectively suppressing reflected Cerenkov photons with an optimum colored reflector on the BGO pixel while minimizing scintillation photon loss. CTRs were investigated utilizing white and three colors (yellow, red, and green) PTFE tapes as a reflector. In addition, black-painted PTFE tape and enhanced specular reflector film were investigated as reference reflector materials. When 3 × 3 × 20 mm3BGO pixels were wrapped with the yellow PTFE reflector, the CTR was significantly improved to 365 ± 5 ps from 403 ± 14 ps measured with the conventional white PTFE reflector. Adequate energy information was still obtained with only 4.1% degradation in light collection compared to the white reflector. Colored reflectors show the possibility to further improve CTR for BGO pixels with optimum reflectance design.


Asunto(s)
Tomografía de Emisión de Positrones , Conteo por Cintilación , Conteo por Cintilación/métodos , Tomografía de Emisión de Positrones/métodos , Fotones , Rayos gamma
2.
Phys Med Biol ; 68(16)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37467766

RESUMEN

Objective.Recent SiPM developments and improved front-end electronics have opened new doors in TOF-PET with a focus on prompt photon detection. For instance, the relatively high Cherenkov yield of bismuth-germanate (BGO) upon 511 keV gamma interaction has triggered a lot of interest, especially for its use in total body positron emission tomography (PET) scanners due to the crystal's relatively low material and production costs. However, the electronic readout and timing optimization of the SiPMs still poses many questions. Lab experiments have shown the prospect of Cherenkov detection, with coincidence time resolutions (CTRs) of 200 ps FWHM achieved with small pixels, but lack system integration due to an unacceptable high power uptake of the used amplifiers.Approach.Following recent studies the most practical circuits with lower power uptake (<30 mW) have been implemented and the CTR performance with BGO of newly developed SiPMs from Fondazione Bruno Kessler tested. These novel SiPMs are optimized for highest single photon time resolution (SPTR).Main results.We achieved a best CTR FWHM of 123 ps for 2 × 2 × 3 mm3and 243 ps for 3 × 3 × 20 mm3BGO crystals. We further show that with these devices a CTR of 106 ps is possible using commercially available 3 × 3 × 20 mm3LYSO:Ce,Mg crystals. To give an insight in the timing properties of these SiPMs, we measured the SPTR with black coated PbF2of 2 × 2 × 3 mm3size. We confirmed an SPTR of 68 ps FWHM published in literature for standard devices and show that the optimized SiPMs can improve this value to 42 ps. Pushing the SiPM bias and using 1 × 1 mm2area devices we measured an SPTR of 28 ps FWHM.Significance.We have shown that advancements in readout electronics and SiPMs can lead to improved CTR with Cherenkov emitting crystals. Enabling time-of-flight with BGO will trigger a high interest for its use in low-cost and total-body PET scanners. Furthermore, owing to the prompt nature of Cherenkov emission, future CTR improvements are conceivable, for which a low-power electronic implementation is indispensable. In an extended discussion we will give a roadmap to best timing with prompt photons.


Asunto(s)
Fotones , Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Tiempo , Electrónica , Amplificadores Electrónicos , Conteo por Cintilación
3.
Front Phys ; 102022.
Artículo en Inglés | MEDLINE | ID: mdl-37220601

RESUMEN

Energetic electrons traveling in a dispersive medium can produce Cerenkov radiation. Cerenkov photons' prompt emission, combined with their predominantly forward emission direction with respect to the parent electron, makes them extremely promising to improve radiation detector timing resolution. Triggering gamma detections based on Cerenkov photons to achieve superior timing resolution is challenging due to the low number of photons produced per interaction. Monte Carlo simulations are fundamental to understanding their behavior and optimizing their pathway to detection. Therefore, accurately modeling the electron propagation and Cerenkov photons emission is crucial for reliable simulation results. In this work, we investigated the physics characteristics of the primary electrons (velocity, energy) and those of all emitted Cerenkov photons (spatial and timing distributions) generated by 511 keV photoelectric interactions in a bismuth germanate crystal using simulations with Geant4/GATE. Geant4 uses a stepwise particle tracking approach, and users can limit the electron velocity change per step. Without limiting it (default Geant4 settings), an electron mean step length of ~250 µm was obtained, providing only macroscopic modeling of electron transport, with all Cerenkov photons emitted in the forward direction with respect to the incident gamma direction. Limiting the electron velocity change per step reduced the electron mean step length (~0.200 µm), leading to a microscopic approach to its transport which more accurately modeled the electron physical properties in BGO at 511 keV. The electron and Cerenkov photons rapidly lost directionality, affecting Cerenkov photons' transport and, ultimately, their detection. Results suggested that a deep understanding of low energy physics is crucial to perform accurate optical Monte Carlo simulations and ultimately use them in TOF PET detectors.

4.
Nat Photonics ; 15(12): 914-918, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35663419

RESUMEN

X-ray and gamma-ray photons are widely used for imaging but require a mathematical reconstruction step, known as tomography, to produce cross-sectional images from the measured data. Theoretically, the back-to-back annihilation photons produced by positron-electron annihilation can be directly localized in three-dimensional space using time-of-flight information without tomographic reconstruction. However, this has not yet been demonstrated due to the insufficient timing performance of available radiation detectors. Here, we develop techniques based on detecting prompt Cerenkov photons, which when combined with a convolutional neural network for timing estimation resulted in an average timing precision of 32 picoseconds, corresponding to a spatial precision of 4.8 mm. We show this is sufficient to produce cross-sectional images of a positron-emitting radionuclide directly from the detected coincident annihilation photons, without using any tomographic reconstruction algorithm. The reconstruction-free imaging demonstrated here directly localizes positron emission, and frees the design of an imaging system from the geometric and sampling constraints that normally present for tomographic reconstruction.

5.
Phys Med Biol ; 64(17): 175001, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31344688

RESUMEN

Thallium bromide (TlBr) is a semiconductor material and, simultaneously, a good Cerenkov radiator. The performance of a TlBr detector that integrates two different readouts, the charge induction readout and the detection of Cerenkov light, was evaluated. A TlBr detector with dimensions of 4 × 4 × 5 mm3, with a monolithic cathode and an anode segmented into strips, was manufactured. One of the bare and polished 4 × 4 mm2 faces of the detector was coupled to a silicon photomultiplier (SiPM) to read out the Cerenkov light. Simultaneous timing and energy resolutions of <400 ps full width at half maximum (FWHM) and ~8.5% at 511 keV were measured using the Cerenkov detection and charge induction readouts, respectively. A coincidence time resolution of 330 ps was obtained when selecting Cerenkov events with amplitudes above 70 mV. The combination of both readouts showed the potential to resolve the depth-of-interaction (DOI) positioning, based on the improvement of energy resolution when selecting events with similar electron drift times. This manuscript sets the stage for a new family of semiconductor detectors that combine charge induction readout with the Cerenkov light detection. Such detectors can provide, simultaneously, outstanding timing, energy, and spatial resolution, and will be an excellent fit for applications that require the detection of high-energy gamma photons with high timing accuracy, such as time-of-flight positron emission tomography (TOF-PET) and prompt gamma imaging (PGI) to assess the particle range in hadron therapy.


Asunto(s)
Bromuros/química , Tomografía de Emisión de Positrones/métodos , Protones , Semiconductores , Talio/química , Electrones , Rayos gamma , Fotones , Radiometría/instrumentación , Radiometría/métodos
7.
Artículo en Inglés | MEDLINE | ID: mdl-33304614

RESUMEN

PURPOSE: We are investigating the use of promptly emitted Cerenkov photons to improve scintillation detector timing resolution for time-of-flight (TOF) positron emission tomography (PET). Bismuth germanate (BGO) scintillator was used in most commercial PET scanners until the emergence of lutetium oxyorthosilicate, which allowed for TOF PET by triggering on the fast and bright scintillation signal. Yet BGO is also a candidate to generate fast timing triggers based on Cerenkov light produced in the first few picoseconds following a gamma interaction. Triggering on the Cerenkov light produces excellent timing resolution in BGO but is complicated by the very low number of photons produced. A better understanding of the transport and collection of Cerenkov photons is needed to optimize their use for effective triggering of the detectors. METHODS: We simultaneously generated and tracked Cerenkov and scintillation photons with a new model of light transport that we have released in GATE V8.0. This crystal reflectance model was used to study photon detection and timing properties, building realistic waveforms as measured with silicon photomultipliers. RESULTS: We compared the behavior and effect of detecting Cerenkov and scintillation photons at several levels, including detection time stamps, travel time, and coincidence resolving time in 3 × 3 × 20 mm3 BGO crystals. Simulations showed excellent agreement with experimental results and indicated that Cerenkov photons constitute the majority of the signal rising edge. They are therefore critical to provide early triggering and improved the coincidence timing resolution by 50%. POTENTIAL APPLICATIONS: To our knowledge, this is the first complete simulation of the generation, transport, and detection of the combination of Cerenkov and scintillation photons for TOF detectors. This simulation framework will allow for quantitative study of the factors influencing timing resolution, including the photodetector characteristics, and ultimately aid the development of BGO and other Cerenkov-based detectors for TOF PET.

8.
Phys Med Biol ; 63(4): 04LT01, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29364135

RESUMEN

The feasibility of using Cerenkov light, generated by energetic electrons following 511 keV photon interactions in the semiconductor TlBr, to obtain fast timing information for positron emission tomography (PET) was evaluated. Due to its high refractive index, TlBr is a relatively good Cerenkov radiator and with its wide bandgap, has good optical transparency across most of the visible spectrum. Coupling an SiPM photodetector to a slab of TlBr (TlBr-SiPM) yielded a coincidence timing resolution of 620 ps FWHM between the TlBr-SiPM detector and a LFS reference detector. This value improved to 430 ps FWHM by applying a high pulse amplitude cut based on the TlBr-SiPM and reference detector signal amplitudes. These results are the best ever achieved with a semiconductor PET detector and already approach the performance required for time-of-flight. As TlBr has higher stopping power and better energy resolution than the conventional scintillation detectors currently used in PET scanners, a hybrid TlBr-SiPM detector with fast timing capability becomes an interesting option for further development.


Asunto(s)
Electrones , Fotones , Tomografía de Emisión de Positrones/métodos , Semiconductores , Tomografía de Emisión de Positrones/instrumentación
9.
J Med Imaging (Bellingham) ; 3(4): 043501, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27921069

RESUMEN

Current research in the field of positron emission tomography (PET) focuses on improving the sensitivity of the scanner with thicker detectors, extended axial field-of-view, and time-of-flight (TOF) capability. These create the need for depth-of-interaction (DOI) encoding to correct parallax errors. We have proposed a method to encode DOI using phosphor-coated crystals. Our initial work using photomultiplier tubes (PMTs) demonstrated the possibilities of the proposed method, however, a major limitation of PMTs for this application is poor quantum efficiency in yellow light, corresponding to the wavelengths of the converted light by the phosphor coating. In contrast, the red-green-blue-high-density (RGB-HD) silicon photomultipliers (SiPMs) have a high photon detection efficiency across the visible spectrum. Excellent coincidence resolving time (CRT; [Formula: see text]) was obtained by coupling RGB-HD SiPMs and [Formula: see text] lutetium fine silicate crystals coated on a third of one of their lateral sides. Events were classified in three DOI bins ([Formula: see text] width) with an average sensitivity of 83.1%. A CRT of [Formula: see text] combined with robust DOI encoding is a marked improvement in the phosphor-coated approach that we pioneered. For the first time, we read out these crystals with SiPMs and clearly demonstrated the potential of the RGB-HD SiPMs for this TOF-DOI PET detector.

10.
Phys Med Biol ; 61(18): L38-L47, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27589153

RESUMEN

Bismuth germanate (BGO) was a very attractive scintillator in early-generation positron emission tomography (PET) scanners. However, the major disadvantages of BGO are lower light yield and longer rise and decay time compared to currently popular scintillators such as LSO and LYSO. This results in poorer coincidence timing resolution and it has generally been assumed that BGO is not a suitable scintillator for time-of-flight (TOF) PET applications. However, when a 511 keV photon interacts in a scintillator, a number of Cerenkov photons are produced promptly by energetic electrons released by photoelectric or Compton interactions. If these prompt photons can be captured, they could provide a better timing trigger for PET. Since BGO has a high refractive index (increasing the Cerenkov light yield) and excellent optical transparency down to 320 nm (Cerenkov light yield is higher at shorter wavelengths), we hypothesized that the coincidence timing resolution of BGO can be significantly improved by efficient detection of the Cerenkov photons. However, since the number of Cerenkov photons is far less than the number of scintillation photons, and they are more abundant in the UV and blue part of the spectrum, photosensors need to have high UV/blue sensitivity, fast temporal response, and very low noise in order to trigger on the faint Cerenkov signal. In this respect, NUV-HD silicon photomultipliers (SiPMs) (FBK, Trento, Italy) are an excellent fit for our approach. In this study, coincidence events were measured using BGO crystals coupled with NUV-HD SiPMs. The existence and influence of Cerenkov photons on the timing measurements were studied using different configurations to exploit the directionality of the Cerenkov emissions. Coincidence resolving time values (FWHM) of ~270 ps from 2 × 3 × 2 mm3 BGO crystals and ~560 ps from 3 × 3 × 20 mm3 BGO crystals were obtained. To our knowledge, these are the best coincidence resolving time values reported for BGO to date. With these values, BGO can be considered as a relevant scintillator for TOF PET scanners, especially if photodetectors with even better near UV/blue response can be developed to further improve the efficiency of Cerenkov light detection.


Asunto(s)
Amplificadores Electrónicos , Bismuto/química , Germanio/química , Fotometría/instrumentación , Tomografía de Emisión de Positrones/instrumentación , Silicio/química , Rayos Ultravioleta , Electrones , Fotometría/métodos , Fotones , Tomografía de Emisión de Positrones/métodos
11.
IEEE Trans Biomed Circuits Syst ; 10(1): 231-42, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25775497

RESUMEN

This paper describes two novel time-to-digital converter (TDC) architectures. The first is a dual-phase tapped-delay-line (TDL) TDC architecture that allows us to minimize the clock skew problem that causes the highly nonlinear characteristics of the TDC. The second is a pipelined on-the-fly calibration architecture that continuously compensates the nonlinearity and calibrates the fine times using the most up-to-date bin widths without additional dead time. The two architectures were combined and implemented in a single Virtex-6 device (ML605, Xilinx) for time interval measurement. The standard uncertainty for the time intervals from 0 to 20 ns was less than 12.83 ps-RMS (root mean square). The resolution (i.e., the least significant bit, LSB) of the TDC was approximately 10 ps at room temperature. The differential nonlinearity (DNL) values were [-1.0, 1.91] and [-1.0, 1.88] LSB and the integral nonlinearity (INL) values were [-2.20, 2.60] and [-1.63, 3.93] LSB for the two different TDLs that constitute one TDC channel. During temperature drift from 10 to 50(°)C, the TDC with on-the-fly calibration maintained the standard uncertainty of 11.03 ps-RMS.


Asunto(s)
Diseño de Equipo/normas , Procesamiento de Señales Asistido por Computador/instrumentación , Conversión Analogo-Digital , Calibración/normas , Tiempo
12.
Ann Occup Environ Med ; 27: 31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26688731

RESUMEN

BACKGROUND: Shift work is closely related with workers' health. In particular, sleep is thought to be affected by shift work. In addition, shift work has been reported to be associated with the type or direction of shift rotation, number of consecutive night shifts, and number of off-duty days. We aimed to analyze the association between the night shift rotation interval and the quality of sleep reported by Korean female shift workers. METHODS: In total, 2,818 female shift workers from the manufacturing industry who received an employee physical examination at a single university hospital from January to August in 2014 were included. Subjects were classified into three groups (A, B, and C) by their night shift rotation interval. The quality of sleep was measured using the Korean version of the Pittsburgh Sleep Quality Index (PSQI). Descriptive analysis, univariate logistic regression, and multivariate logistic regression were performed. RESULTS: With group A as the reference, the odds ratio (OR) for having a seriously low quality of sleep was 1.456 (95% CI 1.171-1.811) and 2.348 (95% CI 1.852-2.977) for groups B and C, respectively. Thus, group C with the shortest night shift rotation interval was most likely to have a low quality of sleep. After adjustment for age, obesity, smoking status, alcohol consumption, exercise, being allowed to sleep during night shifts, work experience, and shift work experience, groups B and C had ORs of 1.419 (95% CI 1.134-1.777) and 2.238 (95% CI 1.737-2.882), respectively, compared to group A. CONCLUSION: Our data suggest that a shorter night shift rotation interval does not provide enough recovery time to adjust the circadian rhythm, resulting in a low quality of sleep. Because shift work is influenced by many different factors, future studies should aim to determine the most optimal shift work model and collect accurate, prospective data.

13.
J Nucl Med ; 53(4): 608-14, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22414638

RESUMEN

UNLABELLED: The most investigated semiconductor photosensor for MRI-compatible PET detectors is the avalanche photodiode (APD). However, the silicon photomultiplier (SiPM), also called the Geiger-mode APD, is gaining attention in the development of the next generation of PET/MRI systems because the SiPM has much better performance than the APD. We have developed an MRI-compatible PET system based on multichannel SiPM arrays to allow simultaneous PET/MRI. METHODS: The SiPM PET scanner consists of 12 detector modules with a ring diameter of 13.6 cm and an axial extent of 3.2 cm. In each detector module, 4 multichannel SiPM arrays (with 4 × 4 channels arranged in a 2 × 2 array to yield 8 × 8 channels) were coupled with 20 × 18 Lu(1.9)Gd(0.1)SiO(5):Ce crystals (each crystal is 1.5 × 1.5 × 7 mm) and mounted on a charge division network for multiplexing 64 signals into 4 position signals. Each detector module was enclosed in a shielding box to reduce interference between the PET and MRI scanners, and the temperature inside the box was monitored for correction of the temperature-dependent gain variation of the SiPM. The PET detector signal was routed to the outside of the MRI room and processed with a field programmable gate array-based data acquisition system. MRI compatibility tests and simultaneous PET/MRI acquisitions were performed inside a 3-T clinical MRI system with 4-cm loop receiver coils that were built into the SiPM PET scanner. Interference between the imaging systems was investigated, and phantom and mouse experiments were performed. RESULTS: No radiofrequency interference on the PET signal or degradation in the energy spectrum and flood map was shown during simultaneous PET/MRI. The quality of the MRI scans acquired with and without the operating PET showed only slight degradation. The results of phantom and mouse experiments confirmed the feasibility of this system for simultaneous PET/MRI. CONCLUSION: Simultaneous PET/MRI was possible with a multichannel SiPM-based PET scanner, with no radiofrequency interference on PET signals or images and only slight degradation of the MRI scans.


Asunto(s)
Luz , Imagen por Resonancia Magnética/instrumentación , Tomografía de Emisión de Positrones/instrumentación , Silicio , Animales , Estudios de Factibilidad , Ratones , Fantasmas de Imagen , Factores de Tiempo
14.
J Nucl Med ; 52(4): 572-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21421723

RESUMEN

UNLABELLED: Silicon photomultiplier (SiPM; also called a Geiger-mode avalanche photodiode) is a promising semiconductor photosensor in PET and PET/MRI because it is intrinsically MRI-compatible and has internal gain and timing properties comparable to those of a photomultiplier tube. In this study, we have developed a small-animal PET system using SiPMs and lutetium gadolinium oxyorthosilicate (LGSO) crystals and performed physical evaluation and animal imaging studies to show the feasibility of this system. METHODS: The SiPM PET system consists of 8 detectors, each of which comprises 2 × 6 SiPMs and 4 × 13 LGSO crystals. Each crystal has dimensions of 1.5 × 1.5 × 7 mm. The crystal face-to-face diameter and axial field of view are 6.0 cm and 6.5 mm, respectively. Bias voltage is applied to each SiPM using a finely controlled voltage supply because the gain of the SiPM strongly depends on the supply voltage. The physical characteristics were studied by measuring energy resolution, sensitivity, and spatial resolution. Various mouse and rat images were obtained to study the feasibility of the SiPM PET system in in vivo animal studies. Reconstructed PET images using a maximum-likelihood expectation maximization algorithm were coregistered with animal CT images. RESULTS: All individual LGSO crystals within the detectors were clearly distinguishable in flood images obtained by irradiating the detector using a (22)Na point source. The energy resolution for individual crystals was 25.8% ± 2.6% on average for 511-keV photopeaks. The spatial resolution measured with the (22)Na point source in a warm background was 1.0 mm (2 mm off-center) and 1.4 mm (16 mm off-center) when the maximum-likelihood expectation maximization algorithm was applied. A myocardial (18)F-FDG study in mice and a skeletal (18)F study in rats demonstrated the fine spatial resolution of the scanner. The feasibility of the SiPM PET system was also confirmed in the tumor images of mice using (18)F-FDG and (68)Ga-RGD and in the brain images of rats using (18)F-FDG. CONCLUSION: These results indicate that it is possible to develop a PET system using a promising semiconductor photosensor, which yielded reasonable PET performance in phantom and animal studies.


Asunto(s)
Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Animales , Huesos/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Electrónica , Diseño de Equipo , Fluorodesoxiglucosa F18 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Compuestos Organometálicos , Ácido Pentético/análogos & derivados , Radiofármacos , Ratas , Ratas Sprague-Dawley
15.
FEMS Microbiol Lett ; 249(1): 149-55, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16006073

RESUMEN

Two isolates of Fusarium proliferatum from different global locations and habitats mineralized several natural and synthetic lignins. MUCL 31970 was isolated from a forest soil whereas the second strain, NRRL 31071, was a wheat endophyte causing disease in stressed seedlings. Onset and the fastest rate of lignin mineralization occurred during logarithmic and early stationary-phase of culture. Reduction of glucose in the medium shortened log-growth phase and advanced the onset of mineralization for both isolates. Mineralization correlated with the detection of extracellular laccase and aryl alcohol oxidase activities. The carbon-nitrogen ratio in the medium influenced laccase isozyme production and secretion by both strains. These studies suggest that both F. proliferatum strains degrade lignin via comparable routes, despite their different habitats and saprophytic or endophytic strategies.


Asunto(s)
Fusarium/metabolismo , Lignina/metabolismo , Microbiología del Suelo , Árboles , Triticum/microbiología , Oxidorreductasas de Alcohol/metabolismo , Ambiente , Fusarium/crecimiento & desarrollo , Fusarium/aislamiento & purificación , Lacasa/metabolismo , Enfermedades de las Plantas/microbiología , España , Utah
16.
Can J Microbiol ; 50(1): 41-9, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15052320

RESUMEN

Metarhizium anisopliae isolates have a wide insect host range, but an impediment to their commercial use as a biocontrol agent of above-ground insects is the high susceptibility of spores to the near-UV present in solar irradiation. To understand stress responses in M. anisopliae, we initiated studies of enzymes that protect against oxidative stress in two strains selected because their spores differed in sensitivity to UV-B. Spores of the more near-UV resistant strain in M. anisopliae 324 displayed different isozyme profiles for catalase-peroxidase, glutathione reductase, and superoxide dismutase when compared with the less resistant strain 2575. A transient loss in activity of catalase-peroxidase and glutathione reductase was observed during germination of the spores, whereas the intensity of isozymes displaying superoxide dismutase did not change as the mycelium developed. Isozyme composition for catalase-peroxidases and glutathione reductase in germlings changed with growth phase. UV-B exposure from lamps reduced the activity of isozymes displaying catalase-peroxidase and glutathione reductase activities in 2575 more than in 324. The major effect of solar UV-A plus UV-B also was a reduction in catalase-peroxidases isozyme level, a finding confirmed by measurement of catalase specific activity. Impaired growth of M. anisopliae after near-UV exposure may be related to reduced abilities to handle oxidative stress.


Asunto(s)
Hypocreales/enzimología , Hypocreales/crecimiento & desarrollo , Estrés Oxidativo , Rayos Ultravioleta , Catalasa/metabolismo , Glutatión Reductasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Hypocreales/efectos de la radiación , Micelio/crecimiento & desarrollo , Peroxidasa/metabolismo , Esporas/crecimiento & desarrollo , Luz Solar , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...