Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629128

RESUMEN

Anthocyanin accumulation is responsible for the coloration of apple fruit, and their accumulation depends on the expression of anthocyanin biosynthesis-related genes. Light is an environmental stimulus that induces fruit color by regulating genes involved in the anthocyanin biosynthesis pathway. In this study, the roles of light and genetic factors on fruit coloration and anthocyanin accumulation in apple fruit were investigated. Three genes in the anthocyanin biosynthesis pathway, MdCHS, MdANS, and MdUFGT1, were synthesized and cloned into a viral-based expression vector system for transient expression in 'Ruby S' apple fruits. Apple fruits were agroinfiltrated with expression vectors harboring MdCHS, MdANS, and MdUFGT1. Agroinfiltrated apple fruits were then either kept in the dark (bagged fruits) or exposed to light (exposed fruits). The agroinfiltrated fruits showed significantly different coloration patterns, transcript expression levels, and anthocyanin accumulation compared to the control fruits. Moreover, these parameters were higher in exposed fruits than in bagged fruits. For stable expression, MdCHS was introduced into a binary vector under the control of the rice α-amylase 3D (RAmy3D) promoter. The ectopic overexpression of MdCHS in transgenic rice calli showed a high accumulation of anthocyanin content. Taken together, our findings suggest that light, together with the overexpression of anthocyanin biosynthesis genes, induced the coloration and accumulation of anthocyanin content in apple fruits by upregulating the expression of the genes involved in the anthocyanin biosynthesis pathway.


Asunto(s)
Malus , Oryza , Antocianinas/genética , Frutas/genética , Malus/genética
2.
J Nanosci Nanotechnol ; 10(1): 252-7, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20352842

RESUMEN

One of the possible reasons for low conductivity of in-situ produced dispersion strengthened copper matrix composites may be the incompleteness of the reaction between the initial reactants that remain in a state of solid solutions in the copper matrix. We report in-situ synthesis of TiB2-Cu composites starting from the powder mixtures with the limited content of copper ensuring a high probability of contact between the particles of titanium and boron and, as a result, their full conversion into the TiB2 phase. The nanoparticles were formed in a self-propagating mode in the ball milled Ti-B-Cu powder mixture corresponding to 57 vol.% TiB2-Cu composition. Afterwards, the system was "diluted" with the required amount of the copper matrix using subsequent ball milling. Highly conductive 4.5 vol.% TiB2-Cu composites showing 82-87% IACS (International Annealed Copper Standard) conductivity were obtained by Spark Plasma Sintering (SPS) of the powders.

3.
J Nanosci Nanotechnol ; 10(1): 336-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20352857

RESUMEN

The present study deals with structural transformations induced by high-energy ball-milling of an amorphous Fe90Zr10 alloy prepared by melt-spinning. The amorphous melt-spun ribbons were found to undergo crystallization into BCC alpha-Fe(Zr) nanocrystallites under high-energy ball milling. The decomposition degree of the amorphous phase increased with increasing milling time and intensity. Our results suggest that the observed crystallization is a deformation-induced process rather than a thermally induced one.

4.
Ultramicroscopy ; 109(5): 599-605, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19064309

RESUMEN

In this contribution the homogeneity of mechanically alloyed Fe-Cu powders for two different compositions (Fe-10 and Fe-2.5at%Cu) has been systematically characterised by atom probe tomography. Since Fe-Cu exhibits the Invar effect, it is among the most attractive systems for technical application. Furthermore, this system is immiscible and characterised by a large positive heat of mixing. In combination with the widespread application and accessibility, this predestines Fe-Cu as a binary model alloy to elaborate the enforced nonequilibrium enhanced solubility for immiscible systems. Depending on the parameters composition and milling time, results on the extension of the solubility limit and on the homogeneity of the alloy are presented, discussed and compared to earlier works. Only for the alloy with lower Cu content and for the prolonged milling time of 50h, chemical homogeneity of the sample as measured by the atom probe was fully reached on the nano-scale. For all other parameter combinations homogeneity could not be achieved, even for long milling times and for those samples that appear to be homogeneous via X-ray analysis. Moreover, impurities were determined, mostly stemming from the fabrication procedure. The arrangement and homogeneity of the most common impurity, oxygen, was evaluated from atom probe data for different samples. Thus, the local concentration, segregation effects and the distribution of impurities could be quantified on the nano-scale, depending on the different nominal compositions and processing parameters. Additionally, structural information could be gained employing transmission electron microscopy and diffraction measurements.

5.
J Electron Microsc (Tokyo) ; 56(2): 43-9, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17928320

RESUMEN

The preparation of transmission electron microscopy (TEM) and atom probe-field ion microscopy (AP-FIM) specimens from mechanically alloyed Ti-Cu-Ni-Sn powder has been explored. Applying the focused ion beam (FIB) based in situ lift-out technique, it has been demonstrated that specimen preparation can be carried on single micrometre-sized powder particles without the use of any embedding media. Since the particles did not incorporate any micropores, as revealed by cross-sectioning, the standard procedure known for bulk samples could be simply implemented to the powder material. A sequence of rectangular cuts and annular milling was found to be a highly efficient way of forming a tip-shaped AP-FIM specimen from a square cross-section blank. A Ga level < or =1 at.% was detected if a low beam current of 10 pA was chosen for the final ion-milling stages. Implanted Ga ions were mostly confined to a zone of about 2 nm in thickness and indicated that ion-induced structural transformations were negligible.

6.
Microsc Microanal ; 13(5): 347-53, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17900385

RESUMEN

Focused ion-beam milling has been applied to prepare needle-shaped atom probe tomography specimens from mechanically alloyed powders without the use of embedding media. The lift-out technique known from transmission electron microscopy specimen preparation was modified to cut micron-sized square cross-sectional blanks out of single powder particles. A sequence of rectangular cuts and annular milling showed the highest efficiency for sharpening the blanks to tips. First atom probe results on a Fe95Cu5 powder mechanically alloyed in a high-energy planetary ball mill for 20 h have been obtained. Concentration profiles taken from this powder sample showed that the Cu distribution is inhomogeneous on a nanoscale and that the mechanical alloying process has not been completed yet. In addition, small clusters of oxygen, stemming from the ball milling process, have been detected. Annular milling with 30 keV Ga ions and beam currents >or=50 pA was found to cause the formation of an amorphous surface layer, whereas no structural changes could be observed for beam currents

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...