Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(26): 3563-3566, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38465405

RESUMEN

CPN-116 is a peptidic agonist that activates human neuromedin U receptor type 2 (NMUR2) but suffers from chemical instability due to inherent backbone isomerization on the Dap residue. To address this, a Leu-Dap-type (Z)-chloroalkene dipeptide isostere was synthesized diastereoselectively as a surrogate of the Leu-Dap peptide bond to develop a (Z)-chloroalkene analogue of CPN-116. The synthesized CPN-116 analogue is stable in 1.0 M phosphate buffer (pH 7.4) without backbone isomerization and can activate NMUR2 with similar potency to CPN-116 at nM concentrations (EC50 = 1.0 nM).


Asunto(s)
Neuropéptidos , Humanos , Neuropéptidos/química , Amidas/farmacología , Péptidos , Receptores de Neurotransmisores/agonistas
2.
Chem Pharm Bull (Tokyo) ; 72(3): 330-335, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38522899

RESUMEN

A 12-keto-type oleanolic acid derivative (4) has been identified as a potent anti-human immunodeficiency virus type-1 (HIV-1) compound that demonstrates synergistic effects with several types of HIV-1 neutralizing antibodies. In the present study, we used a common key synthetic intermediate to carry out the late-stage derivatization of an anti-HIV compound based on the chemical structure of a 12-keto-type oleanolic acid derivative. To execute this strategy, we designed a diketo-type oleanolic acid derivative (5) for chemoselective transformation, targeting the carboxy group and the hydroxyl group on the statine unit, as well as the 3-carbonyl group on the oleanolic acid unit, as orthogonal synthetic handles. We carried out four types of chemoselective transformations, leading to identification of the indole-type derivative (16) as a novel potent anti-HIV compound. In addition, further optimization of the ß-hydroxyl group on the statine unit provided the R-4-isobutyl γ-amino acid-type derivative (6), which exhibited potent anti-HIV activity comparable to that of 4 but with reduced cytotoxicity.


Asunto(s)
VIH-1 , Ácido Oleanólico , Ácido Oleanólico/química
3.
J Pept Sci ; 29(12): e3526, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37257834

RESUMEN

Elucidation of protein function is one of the central issues in the field of life sciences. To study the function of proteins not in isolation, but in a cell or its lysate, thus, it is necessary to selectively label the target protein in a mixture. Affinity labeling is one of several widely used methods for selective labeling; however, this method has the disadvantage that the labeling reagent is always activated, albeit weakly. Therefore, fine-tuning of the reactivity and/or reaction conditions is generally required for successful target-selective labeling. We previously developed a new affinity labeling reagent with N-sulfanylethylanilide (SEAlide) as a key reactive unit. It was designed based on the following hypotheses. SEAlide is less reactive and does not label in the absence of a target protein. Upon target binding, amino acid side-chain functional groups on the target surface convert SEAlide into a thioester form via N-S acyl transfer, allowing the target to be labeled. However, no evidence has been obtained so far to directly prove the hypothesis. In this study, we examine whether amino acid side-chain functional groups can activate SEAlide from the viewpoint of theoretical chemistry. The theoretical studies show that the activation free energy and enthalpy of the acyl transfer of SEAlide are reduced in the presence of methylammonium, which is a model for the protonated side chain of Lys, and acetate, which is a model for the deprotonated side chain of Asp/Glu. It suggests that Lys and Asp/Glu side chains could potentially stabilize the activation transition states to accelerate the thioester formation. Furthermore, the significant decrease in the activation enthalpy indicates that the contribution of entropy to the transition state is large. This result supports the original hypothesis that the SEAlide-based labeling reagent is efficiently activated by binding to the target protein.


Asunto(s)
Proteínas de la Membrana , Compuestos de Azufre , Indicadores y Reactivos , Aminoácidos , Modelos Teóricos
4.
Chemistry ; 29(26): e202300799, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36922350

RESUMEN

A tyrosine (Tyr)- or tryptophan (Trp)-selective metal-free C-H sulfenylation reaction using an acid-activated S-acetamidomethyl cysteine (Cys) sulfoxide, Cys(Acm)(O), has been achieved. The dually protonated intermediate produced from Cys(Acm)(O) under acidic conditions allows the sulfenylation of Tyr. Significantly, the reaction in the presence of trimethylsilyl trifluoromethanesulfonate (TMSOTf) mainly affords a Cys-Tyr-linked peptide even in the presence of Trp residues. In contrast, a Cys-Trp-linked peptide was selectively obtained from the reaction in the presence of guanidine hydrochloride (Gn ⋅ HCl) under acidic conditions. Established Tyr- and Trp-selective sulfenylation methods were used in the Cys-Tyr stapling and Trp lipidation of glucagon-like peptides 1 in a one-pot/stepwise manner. Investigation of the mechanism showed that orbital- and charge-controlled reactions are responsible for the Trp and Tyr selectivity, respectively.


Asunto(s)
Cisteína , Péptidos , Cisteína/química , Péptidos/química , Tirosina/química , Sulfóxidos , Guanidina
5.
Angew Chem Int Ed Engl ; 59(43): 19031-19036, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32662539

RESUMEN

Hydrogen-transfer in the tetrahedral intermediate generated from an imidazolylidene catalyst and α,ß-unsaturated aldehyde forms a conjugated Breslow intermediate. This is a critical step affecting the efficiency of the NHC-catalyzed γ-butyrolactone formation via homoenolate addition to aryl aldehydes. A novel type of imidazolylidene catalyst with pendant alkoxy groups on the ortho-N-aryl groups is described. Catalyst of this sort facilitates the formation of the conjugated Breslow intermediate. Studies of the rate constants for homoenolate annulation affording γ-butyrolactones, reveal that introduction of the oxygen atoms in the appropriate position of the N-aryl substituents can increase the efficiency of imidazolylidene catalysts. Structural and mechanistic studies revealed that pendant alkoxy groups can be located close to the proton of the tetrahedral intermediate, thereby facilitating the proton transfer.

6.
Org Lett ; 21(22): 9119-9123, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31686515

RESUMEN

An asymmetric homoenolate cross-annulation of enals and aldehydes with high enantioselectivity is realized by NHC-catalyzed chemoselective umpolung of enals. The reaction proceeds in a highly chemoselective manner, selectively generating the conjugated Breslow intermediates from enals rather than aldehydes, enabling the homoenolate addition of enals to aldehydes in preference to competing acyl anion-mediated reactions. Enantioenriched substituted γ-butyrolactones are formed in good yields with high enantioselectivities.

7.
Org Lett ; 19(10): 2750-2753, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28485951

RESUMEN

A series of imidazolium salts with various N-aryl groups were synthesized, and their catalytic activities were evaluated to investigate the contribution of the N-aryl groups to the catalytic activity in the synthesis of γ-butyrolactone through an a3→d3-umpolung addition. Imidazolylidenes with 2,6-diethylphenyl groups were effective catalysts, and several mechanistic studies, including a deuterium kinetic isotope effect study, revealed that both steric and kinetic effects were responsible for the enhanced catalytic activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...