Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 10(5): e0127942, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26010537

RESUMEN

Myocardial ischemia reperfusion injury (IRI) adversely affects cardiac performance and the prognosis of patients with acute myocardial infarction. Although myocardial signal transducer and activator of transcription (STAT) 3 is potently cardioprotective during IRI, the inhibitory mechanism responsible for its activation is largely unknown. The present study aimed to investigate the role of the myocardial suppressor of cytokine signaling (SOCS)-3, an intrinsic negative feedback regulator of the Janus kinase (JAK)-STAT signaling pathway, in the development of myocardial IRI. Myocardial IRI was induced in mice by ligating the left anterior descending coronary artery for 1 h, followed by different reperfusion times. One hour after reperfusion, the rapid expression of JAK-STAT-activating cytokines was observed. We precisely evaluated the phosphorylation of cardioprotective signaling molecules and the expression of SOCS3 during IRI and then induced myocardial IRI in wild-type and cardiac-specific SOCS3 knockout mice (SOCS3-CKO). The activation of STAT3, AKT, and ERK1/2 rapidly peaked and promptly decreased during IRI. This decrease correlated with the induction of SOCS3 expression up to 24 h after IRI in wild-type mice. The infarct size 24 h after reperfusion was significantly reduced in SOCS3-CKO compared with wild-type mice. In SOCS3-CKO mice, STAT3, AKT, and ERK1/2 phosphorylation was sustained, myocardial apoptosis was prevented, and the expression of anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) was augmented. Cardiac-specific SOCS3 deletion led to the sustained activation of cardioprotective signaling molecules including and prevented myocardial apoptosis and injury during IRI. Our findings suggest that SOCS3 may represent a key factor that exacerbates the development of myocardial IRI.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Eliminación de Gen , Ratones , Ratones Noqueados , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/patología , Fosforilación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética
2.
Circ J ; 79(7): 1557-67, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25833080

RESUMEN

BACKGROUND: Remote ischemic preconditioning (RIPC) induced by transient limb ischemia is a powerful innate mechanism of cardioprotection against ischemia. Several described mechanisms explain how RIPC may act through neural pathways or humoral factors; however, the mechanistic pathway linking the remote organ to the heart has not yet been fully elucidated. This study aimed to investigate the mechanisms underlying the RIPC-induced production of Janus kinase (JAK)-signal transducer and activator of the transcription (STAT)-activating cytokines and cardioprotection by using mouse and human models of RIPC. METHODS AND RESULTS: Screened circulating cardioprotective JAK-STAT-activating cytokines in mice unexpectedly revealed increased serum erythropoietin (EPO) levels after RIP induced by transient ischemia. In mice, RIPC rapidly upregulated EPO mRNA and its main transcriptional factor, hypoxia-inducible factor-1α (HIF1α), in the kidney. Laser Doppler blood flowmetry revealed a prompt reduction of renal blood flow (RBF) after RIPC. RIPC activated cardioprotective signaling pathways and the anti-apoptotic Bcl-xL pathway in the heart, and reduced infarct size. In mice, these effects were abolished by administration of an EPO-neutralizing antibody. Renal nerve denervation also abolished RIPC-induced RBF reduction, EPO production, and cardioprotection. In humans, transient limb ischemia of the upper arm reduced RBF and increased serum EPO levels. CONCLUSIONS: Based on the present data, we propose a novel RIPC mechanism in which inhibition of infarct size by RIPC is produced through the renal nerve-mediated reduction of RBF associated with activation of the HIF1α-EPO pathway.


Asunto(s)
Eritropoyetina/metabolismo , Precondicionamiento Isquémico Miocárdico , Riñón/inervación , Infarto del Miocardio/metabolismo , Nervios Periféricos/metabolismo , Animales , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Quinasas Janus/metabolismo , Riñón/irrigación sanguínea , Riñón/metabolismo , Riñón/fisiopatología , Masculino , Ratones , Ratones Endogámicos BALB C , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/prevención & control , Nervios Periféricos/fisiopatología , Proteína bcl-X/metabolismo
3.
Mol Cell Biol ; 35(1): 211-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25348719

RESUMEN

Mitochondria are dynamic organelles, and their fusion and fission regulate cellular signaling, development, and mitochondrial homeostasis, including mitochondrial DNA (mtDNA) distribution. Cardiac myocytes have a specialized cytoplasmic structure where large mitochondria are aligned into tightly packed myofibril bundles; however, recent studies have revealed that mitochondrial dynamics also plays an important role in the formation and maintenance of cardiomyocytes. Here, we precisely analyzed the role of mitochondrial fission in vivo. The mitochondrial fission GTPase, Drp1, is highly expressed in the developing neonatal heart, and muscle-specific Drp1 knockout (Drp1-KO) mice showed neonatal lethality due to dilated cardiomyopathy. The Drp1 ablation in heart and primary cultured cardiomyocytes resulted in severe mtDNA nucleoid clustering and led to mosaic deficiency of mitochondrial respiration. The functional and structural alteration of mitochondria also led to immature myofibril assembly and defective cardiomyocyte hypertrophy. Thus, the dynamics of mtDNA nucleoids regulated by mitochondrial fission is required for neonatal cardiomyocyte development by promoting homogeneous distribution of active mitochondria throughout the cardiomyocytes.


Asunto(s)
ADN Mitocondrial/genética , Dinaminas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Mitocondrias Cardíacas/metabolismo , Dinámicas Mitocondriales , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Microscopía Electrónica , Proteínas Mitocondriales/metabolismo , Células Musculares/citología , Miocitos Cardíacos/citología , Consumo de Oxígeno , Especies Reactivas de Oxígeno/metabolismo
5.
Int J Cardiol ; 160(3): 216-9, 2012 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-22841473

RESUMEN

BACKGROUND: Dendritic cells (DCs) are highly potent professional antigen-presenting cells that play a central role in initiating the primary immune response. Accumulating evidence suggests that immune-mediated inflammation plays an important role in the pathophysiology of AMI, but the mechanism that triggers such immune responses is unknown. METHODS: Using multi-color flow-cytometry, we determined the numbers of circulating myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) in patients with AMI (n = 26) or stable angina pectoris (SAP) (n = 19), and in age-matched control subjects (n = 19). The DC activation markers CD40 and CD83 were also measured. RESULTS: On admission, circulating mDC and pDC counts were significantly lower in AMI patients compared to control subjects and SAP patients (mDC, P < 0.01; pDC, P < 0.05). The activation markers of mDCs in AMI patients were significantly higher and returned to the levels of control subjects or SAP patients 3 days after AMI (mDC, P < 0.05; pDC, P < 0.05). Reductions of circulating mDC and pDC numbers were restored 7 days after the onset of AMI. Furthermore, we found that the recovery of the circulating DC numbers 14 days after AMI was correlated with the alterations of creatine kinase-MB (CK-MB) (mDC, r = 0.48, P < 0.05; pDC, r=0.52, P < 0.01) and brain natriuretic peptide (BNP) (mDC, r = 0.53, P < 0.01; pDC, r = 0.51, P < 0.01). CONCLUSION: Our findings suggest that the transient reduction and activation of circulating DCs may play important roles in the pathophysiology of myocardial injury after AMI.


Asunto(s)
Células Dendríticas/metabolismo , Citometría de Flujo/métodos , Infarto del Miocardio/sangre , Anciano , Anciano de 80 o más Años , Recuento de Células/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/diagnóstico , Factores de Tiempo
6.
Hypertens Res ; 35(11): 1063-8, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22763477

RESUMEN

Lysyl oxidase (LOX) and LOX-like protein-1 (LOXL-1) are extracellular matrix-embedded amine oxidases that have critical roles in the cross-linking of collagen and elastin. LOX family proteins are abundantly expressed in the remodeled heart of animals and humans and are implicated in cardiac fibrosis; however, their role in cardiac hypertrophy is unknown. In this study, in vitro stimulation with hypertrophic agonists significantly increased LOXL-1 expression, LOX enzyme activity and [(3)H] leucine incorporation in neonatal rat cardiomyocytes. A LOX inhibitor, beta-aminopropionitrile (BAPN), inhibited agonist-induced leucine incorporation in cardiomyocytes in vitro, suggesting the involvement of LOXL-1 in cardiomyocyte hypertrophy. Abdominal aortic constriction in rats produced left ventricular hypertrophy in parallel with LOXL-1 mRNA upregulation. And BAPN administration significantly inhibited angiotensin II-induced cardiac hypertrophy in vivo. These results suggest a role of LOXL-1 in cardiac hypertrophy in vivo. We generated transgenic mice with cardiomyocyte-specific expression of LOXL-1. LOXL-1 transgenic mice pups were born normally and grew to adulthood without increased mortality; these mice exhibited a greater left ventricle to body weight ratio, larger myocyte diameter, and more brain natriuretic peptide expression than their wild-type littermates. Echocardiography revealed that the LOXL-1 transgenic mice also had greater wall thickness with preserved cardiac contraction. Our results indicate a possible fundamental role of LOXL-1 in cardiac hypertrophy.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patología , Miocitos Cardíacos/metabolismo , Aminoácido Oxidorreductasas/antagonistas & inhibidores , Aminopropionitrilo/farmacología , Angiotensina II/efectos adversos , Angiotensina II/efectos de los fármacos , Angiotensina II/farmacología , Animales , Animales Recién Nacidos , Cardiomegalia/inducido químicamente , Células Cultivadas , Modelos Animales de Enfermedad , Ecocardiografía , Endotelina-1/farmacología , Técnicas In Vitro , Leucina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ratas , Ratas Wistar
7.
J Am Coll Cardiol ; 59(9): 838-52, 2012 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-22361405

RESUMEN

OBJECTIVES: The study investigated the role of myocardial suppressor of cytokine signaling-3 (SOCS3), an intrinsic negative feedback regulator of the janus kinase and signal transducer and activator of transcription (JAK-STAT) signaling pathway, in the development of left ventricular (LV) remodeling after acute myocardial infarction (AMI). BACKGROUND: LV remodeling after AMI results in poor cardiac performance leading to heart failure. Although it has been shown that JAK-STAT-activating cytokines prevent LV remodeling after AMI in animals, little is known about the role of SOCS3 in this process. METHODS: Cardiac-specific SOCS3 knockout mice (SOCS3-CKO) were generated and subjected to AMI induced by permanent ligation of the left anterior descending coronary artery. RESULTS: Although the initial infarct size after coronary occlusion measured by triphenyltetrazolium chloride staining was comparable between SOCS3-CKO and control mice, the infarct size 14 days after AMI was remarkably inhibited in SOCS3-CKO, indicating that progression of LV remodeling after AMI was prevented in SOCS3-CKO hearts. Prompt and marked up-regulations of multiple JAK-STAT-activating cytokines including leukemia inhibitory factor and granulocyte colony-stimulating factor (G-CSF) were observed within the heart following AMI. Cardiac-specific SOCS3 deletion enhanced multiple cardioprotective signaling pathways including STAT3, AKT, and extracellular signal-regulated kinase (ERK)-1/2, while inhibiting myocardial apoptosis and fibrosis as well as augmenting antioxidant expression. CONCLUSIONS: Enhanced activation of cardioprotective signaling pathways by inhibiting myocardial SOCS3 expression prevented LV remodeling after AMI. Our data suggest that myocardial SOCS3 may be a key molecule in the development of LV remodeling after AMI.


Asunto(s)
Eliminación de Gen , Infarto del Miocardio/genética , Miocardio/metabolismo , ARN/genética , Proteínas Supresoras de la Señalización de Citocinas/genética , Disfunción Ventricular Izquierda/etiología , Remodelación Ventricular/genética , Animales , Western Blotting , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ecocardiografía , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Etiquetado Corte-Fin in Situ , Masculino , Ratones , Ratones Endogámicos BALB C , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/genética , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/biosíntesis , Regulación hacia Arriba , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...