Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 111(4): 805-811, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36401346

RESUMEN

Rigid spinal fusion with instrumentation has been widely applied in treating degenerative spinal disorders and has shown excellent and stable surgical results. However, adjacent segment pathology or implants' loosening could be problematic due to the spine's segmental fusion. Therefore, this study verified a novel concept for posterior stabilization with polyethylene inserts inside a pedicle screw assembly using bone models. We observed that although the gripping capacity of the dynamic pedicle screw system using a tensile and compression tester was less than half that of the rigid pedicle screw system, the flexion-extension moment of the dynamic pedicle screws was significantly lower than that of the rigid pedicle screws. Furthermore, while the bending force of the rigid pedicle screw assembly increased linearly with an increase in the bending angle throughout the test, that of the dynamic pedicle screw assembly also increased linearly until a bending angle of 2.5° was reached. However, this angle decreased at a bending angle of more than 2.5°. Additionally, the fatigue test of 1.0 × 106 cycles showed that the pull-out force of the dynamic pedicle screws from two different polyurethane foam blocks was significantly higher than that of the rigid pedicle screws. Therefore, based on our results, we propose that the device can be applied in clinical cases to reduce screw loosening and adjacent segment pathology.


Asunto(s)
Tornillos Pediculares , Fusión Vertebral , Polietileno , Fenómenos Biomecánicos , Vértebras Lumbares/cirugía
2.
Adv Healthc Mater ; 11(9): e2101479, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34535978

RESUMEN

Osteoarthritis (OA) is a serious chronic and degenerative disease that increasingly occurs in the aged population. Its current clinical treatments are limited to symptom relief and cannot regenerate cartilage. Although a better understanding of OA pathophysiology has been facilitating the development of novel therapeutic regimen, delivery of therapeutics to target sites with minimal invasiveness, high retention, and minimal side effects remains a challenge. Biocompatible hydrogels have been recognized to be highly promising for controlled delivery and release of therapeutics and biologics for tissue repair. In this review, the current approaches and the challenges in OA treatment, and unique properties of injectable natural polymer hydrogels as delivery system to overcome the challenges are presented. The common methods for fabrication of injectable polysaccharide-based hydrogels and the effects of their composition and properties on the OA treatment are detailed. The strategies of the use of hydrogels for loading and release cargos are also covered. Finally, recent efforts on the development of injectable polysaccharide-based hydrogels for OA treatment are highlighted, and their current limitations are discussed.


Asunto(s)
Hidrogeles , Osteoartritis de la Rodilla , Anciano , Cartílago , Humanos , Osteoartritis de la Rodilla/tratamiento farmacológico , Polímeros , Polisacáridos
3.
J Biomed Mater Res B Appl Biomater ; 110(1): 89-102, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34128321

RESUMEN

Measurements of wear resistance and metal ion release are important for designing bearing couples or interfaces in total hip arthroplasty (THA). In this study, we investigated wear resistance and metal ion release of surface-modified metal-free all-polymer hip bearings, such as poly(ether-ether-ketone), (PEEK) on cross-linked polyethylene (PEEK-on-CLPE), with a hydrated gel-like surface layer, to propose an improved alternative to the conventional materials used to design THA bearings. The PEEK surface resulted in less metal ion release than the cobalt-chromium-molybdenum (Co-Cr-Mo) alloy surface owing to the lack of metal. The PEEK-on-CLPE bearing (6.33 mg/106 cycles) had lower wear (rate) than the bearing with Co-Cr-Mo alloy-on-CLPE (10.47 mg/106 cycles) under controlled laboratory conditions; the wear performance of the all-polymer hip bearings was further improved with hemi- or both-surface modified with a hydrated poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer (3.74 and 3.06 mg/106 cycles, respectively). The PMPC-grafted interface of PEEK-on-CLPE will be especially suitable for THA candidates. This study is of key importance for the design of lifelong THA and a better understanding of the limitations resulting from using PEEK. Further studies are necessary to evaluate the possibility of using this material in artificial hips.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Fosfolípidos , Polietileno , Polímeros , Diseño de Prótesis , Propiedades de Superficie
4.
J Biomed Mater Res A ; 107(5): 1052-1063, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30688402

RESUMEN

Improved thromboresistance of mechanical valves is desired to decrease the risk of thromboembolism and thrombosis and reduce the dosage of anticoagulation with a vitamin K antagonist (e.g., warfarin). For several mechanical valves, design-related features are responsible for their improved thromboresistance. However, it remains unclear whether material-related features provide a practical level of thromboresistance to mechanical valves. Here, we studied the effect of a bileaflet valve made of poly(ether ether ketone) (PEEK) with a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted surface (PEEK-g-PMPC). PMPC is a well-known thromboresistant polymeric material. A short-term (<26 h) porcine aortic valve replacement model using neither an anticoagulant nor an antiplatelet agent showed that the PEEK-g-PMPC valve opened and closed normally with an allowable transvalvular gradient. Unlike an untreated PEEK valve, no thrombus formed on the PEEK-g-PMPC valves on gross anatomy examination in addition to the absence of traveled thrombi in the kidney and lung tissues. Material (PEEK-g-PMPC)-related thromboresistance appeared to decrease the risk of thromboembolism and thrombosis for patients with mechanical valves. However, thromboresistance of the PEEK-g-PMPC valve requires improvement because fibrous fouling was still observed on the leaflet. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1052-1063, 2019.


Asunto(s)
Válvula Aórtica/cirugía , Implantación de Prótesis de Válvulas Cardíacas , Cetonas/farmacología , Fosforilcolina/análogos & derivados , Polietilenglicoles/farmacología , Ácidos Polimetacrílicos/farmacología , Trombosis/terapia , Animales , Válvula Aórtica/efectos de los fármacos , Válvula Aórtica/ultraestructura , Benzofenonas , Materiales Biocompatibles/farmacología , Modelos Animales de Enfermedad , Riñón/citología , Pulmón/citología , Masculino , Ensayo de Materiales , Fosforilcolina/farmacología , Polímeros , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Porcinos , Porcinos Enanos
5.
Acta Biomater ; 86: 338-349, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30590185

RESUMEN

Although laboratory tests and mid-term clinical outcomes show the clinical safety and remarkable wear resistance of the highly cross-linked polyethylene (HXLPE) acetabular liner with a nanometer-scaled graft layer of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), the wear resistance of the layer under severe abrasive conditions is concerning. We evaluated the effects of a roughened femoral head and the grafting locus on the wear resistance of the PMPC-grafted HXLPE liner and the effect of PMPC grafting on wear resistance of the HXLPE substrate by removing the PMPC-grafted layer using a severely roughened femoral head. Against a moderately roughened femoral head, the PMPC-grafted HXLPE liner showed negative wear, although an untreated HXLPE liner increased the wear by 154.1% compared with wear against a polished femoral head, confirming that PMPC grafts were unaffected. Against a severely roughened femoral head, the PMPC-grafted layer of the head contact area might be removed under severe conditions. However, the wear rate was reduced by 52.5% compared to that of untreated HXLPE liners. Moreover, the head non-contact area-modified PMPC-grafted HXLPE liner against a polished femoral head reduced the wear by 76.8% compared with untreated HXLPE liner; thus, this area may be also important in the development of fluid-film lubrication. STATEMENT OF SIGNIFICANCE: Here we describe effects of a roughened femoral head and the locus of grafting on the wear-resistance of the phospholipid polymer grafted highly cross-linked polyethylene (PMPC-HXLPE) liner. Against a moderately roughened femoral head, the PMPC-HXLPE liner showed negative wear, confirming that PMPC grafts were unaffected. After removing the PMPC layer of the head contact area using a severely roughened femoral head, the wear rate not only exceeded that of untreated HXLPE liners, but was reduced by 52.5%, confirming that PMPC grafting does not affect the wear-resistance of the HXLPE substrate. In addition, the head non-contact area-modified PMPC-HXLPE liner reduced the wear by 76.8%. Thus, this area may also may be important in the development of fluid-film lubrication.


Asunto(s)
Acetábulo/fisiología , Cabeza Femoral/trasplante , Metacrilatos/química , Fosforilcolina/análogos & derivados , Polímeros/química , Reactivos de Enlaces Cruzados/química , Humanos , Fosforilcolina/química , Polietileno/química
6.
Langmuir ; 35(5): 1954-1963, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29956942

RESUMEN

Recently, traditional strategies for manipulating orthopedic bearing substrates have attempted to improve their wear resistance by adjusting polyethylene substrate through cross-linking and antioxidant blending. However, further research is required on the substrate, as well as the surface focused on the structure and role of articular cartilage. We therefore develop an orthopedic bearing surface comprising a nanometer-scale hydrated gel-like layer by grafting highly hydrophilic poly(2-methacryloyloxyethyl phosphorylcholine), with the aim of mimicking the lubrication mechanism of articular cartilage, and investigate its surface characteristics, bulk characteristics, and behavior under load bearing conditions upon accelerated aging. Neither the hydrophilicity nor lubricity of the gel-like surface was influenced by accelerated aging; instead, high stability was revealed, even under strong oxidation conditions. The characteristics of the hydrated gel-like surface potentiated the wear resistance of the cross-linked polyethylene liner, irrespective of accelerated aging. These results suggest that the hydrated gel-like surface enhances the longevity of cross-linked polyethylene bearings even under load-bearing conditions. Furthermore, the inflection point on the time series of wear can be a suitable indicator of the durability of the life-long protectant. In conclusion, the hydrated gel-like surface can positively increase orthopedic implant durability.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Geles/química , Fosforilcolina/análogos & derivados , Polietileno/química , Ácidos Polimetacrílicos/química , Prótesis Anclada al Hueso , Interacciones Hidrofóbicas e Hidrofílicas , Lubrificación , Fenómenos Mecánicos , Fosforilcolina/química , Propiedades de Superficie
7.
J Mech Behav Biomed Mater ; 79: 203-212, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29306728

RESUMEN

Manipulating the surface and substrate of cross-linked polyethylene (CLPE) is an essential approach for obtaining life-long orthopedic bearings. We therefore proposed a bearing material comprised of an antioxidative substrate generated by vitamin E blending (HD-CLPE[VE]) with a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted surface, and investigated its wear resistance and oxidative stability under accelerated aging and load bearing conditions. Neither the hydration nor friction kinetics of the molecular network structure of the PMPC-grafted surface or the HD-CLPE(VE) substrate were influenced by accelerated aging but rather exhibited high stability even under high oxidation conditions. The characteristics of the PMPC-grafted surface improved the wear and impact fatigue resistance of the HD-CLPE(VE) liner regardless of accelerated aging. Notably, the PMPC-grafted surface was found to affect the potential oxidative stability at the rim part of the acetabular liner. PMPC chains serve several important functions on the surface regardless of load bearing, such as high lubricity or low lipophilicity attributed to phosphorylcholine groups and/or surrounding water-fluid film, and suppression of lipid diffusion attributed to methacrylate main chains on the surface. Together, these results provide preliminary evidence that the PMPC graft layer and vitamin E-blended substrate might positively affect the extent of orthopedic implant durability.


Asunto(s)
Materiales Biocompatibles/química , Polietileno/química , Prótesis de Cadera , Ensayo de Materiales , Oxidación-Reducción , Polímeros , Ácidos Polimetacrílicos/química , Propiedades de Superficie , Soporte de Peso
8.
J Biomed Mater Res B Appl Biomater ; 106(3): 1028-1037, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28485068

RESUMEN

Younger, active patients who undergo total hip arthroplasty (THA) have increasing needs for wider range of motion and improved stability of the joint. Therefore, bearing materials having not only higher wear resistance but also mechanical strength are required. Carbon fiber-reinforced poly(ether ether ketone) (CFR-PEEK) is known as a super engineering plastic that has great mechanical strength. In this study, we focused on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted CFR-PEEK and investigated the effects of PMPC grafting and the femoral heads materials on the wear properties of CFR-PEEK liners. Compared with untreated CFR-PEEK, the PMPC-grafted CFR-PEEK surface revealed higher wettability and lower friction properties under aqueous circumstances. In the hip simulator wear test, wear particles generated from the PMPC-grafted CFR-PEEK liners were fewer than those of the untreated CFR-PEEK liners. There were no significant differences in the size and the morphology of the wear particles between the differences of PMPC-grafting and the counter femoral heads. Zirconia-toughened alumina (ZTA) femoral heads had significantly smoother surfaces compared to cobalt-chromium-molybdenum alloy femoral heads after the hip simulator test. Thus, we conclude that the bearing combination of the PMPC-grafted CFR-PEEK liner and ZTA head is expected to be a lifelong bearing interface in THA. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1028-1037, 2018.


Asunto(s)
Fibra de Carbono , Cerámica , Cabeza Femoral , Prótesis de Cadera , Cetonas/química , Metales , Fosforilcolina/análogos & derivados , Polietilenglicoles/química , Ácidos Polimetacrílicos/química , Óxido de Aluminio , Benzofenonas , Materiales Biocompatibles , Humanos , Fosforilcolina/química , Polímeros , Rayos Ultravioleta , Vitalio , Circonio
9.
J Biomed Mater Res B Appl Biomater ; 106(2): 610-618, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28263442

RESUMEN

One of the important factors in determining the success of joint replacement is the wear performance of polyethylene. Although highly crosslinked polyethylene (CLPE) is presently used, it is still not adequate. We have developed a surface modification technology using poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) in an attempt to improve wear performance. In this study, we evaluated the wear and creep deformation resistances of 3-mm and 6-mm thick PMPC-grafted CLPE disks, set on a metal back-plate, with and without a sham screw hole. The gravimetric wear and volumetric change of the disks were examined using a multidirectional pin-on-disk tester. PMPC grafting decreased the gravimetric wear of CLPE regardless of the presence of a screw hole, and did not affect the volumetric change. The volumetric change in the bearing and backside surfaces of the 3-mm thick disk with a screw hole was much larger than that of those without a screw hole or those of the 6-mm thick disk, which was caused by creep deformation. PMPC grafting on the bearing surface can be a material engineering approach to reduce the wear without changing the creep deformation resistance, and is a promising surface modification technology that can be used to increase the longevity of various artificial joints. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 610-618, 2018.


Asunto(s)
Tornillos Óseos , Reactivos de Enlaces Cruzados/farmacología , Ensayo de Materiales , Fosforilcolina/análogos & derivados , Polietileno/química , Ácidos Polimetacrílicos/química , Ácido Acético/química , Ácido Acético/farmacología , Reactivos de Enlaces Cruzados/química , Etilenodiaminas/química , Etilenodiaminas/farmacología , Análisis de Elementos Finitos , Modelos Lineales , Lubricantes/química , Lubricantes/farmacología , Fosforilcolina/química , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/farmacología , Azida Sódica/química , Azida Sódica/farmacología , Propiedades de Superficie , Rayos Ultravioleta
10.
J Biomed Mater Res B Appl Biomater ; 106(8): 2815-2826, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29266687

RESUMEN

Taper fretting corrosion is considered a potentially limiting factor for total hip arthroplasty longevity. Recently, attention has been focused on new materials for ceramic femoral heads, for example, zirconia-toughened alumina (ZTA), since they have an alternative bearing surface that can improve the wear resistance. Moreover, ceramics have high chemical stability and corrosion resistance. In this study, we evaluated the effects of ZTA and Co-Cr-Mo alloy femoral heads on their taper fretting and/or corrosion characteristics under a controlled hip simulator test. After the test, less fretting and corrosion were observed in the taper surface of the trunnion against the ZTA femoral head than for that against the Co-Cr-Mo alloy femoral head. In addition, corrosion damages were only observed in the lateral-distal taper surface (noncontact area) of the trunnion in the Co-Cr-Mo alloy femoral head group. The ZTA femoral head group also eliminated the potential for Co ion release into the lubricants from taper corrosion, reducing the possibility of adverse local tissue inflammatory responses. In conclusion, ZTA femoral heads showed markedly less fretting corrosion compared to Co-Cr-Mo alloy femoral heads and have a lower potential for metal ion release. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2815-2826, 2018.


Asunto(s)
Óxido de Aluminio/química , Cabeza Femoral , Prótesis de Cadera , Diseño de Prótesis , Vitalio/química , Circonio/química , Corrosión , Humanos , Falla de Prótesis
11.
J Biomed Mater Res B Appl Biomater ; 105(6): 1453-1460, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27087128

RESUMEN

Current efforts to shorten the healing times of life-long dental implants and prevent their fouling by organic impurities have focused on using surface-modification treatments and alternative packaging, respectively. In this study, we investigated the time course of the surface characteristics, including the wettability, a protein-adsorption and apatite-formation abilities, of alkali- and heat-treated (AH-treated) Ti samples during storage in vacuum over a period of 52 weeks. The AH treatment resulted in the formation of a nanometer-scale needle-like rougher surface of the Ti samples. Although the water contact angle of the AH-treated Ti sample increased slightly, it remained as low as approximately 10° even after storage in vacuum for 52 weeks. There was no significant difference in the protein-adsorption and apatite-formation abilities of the AH-treated Ti sample before and after storage. Further, the AH-treated Ti sample exhibited greater protein-adsorption and apatite-formation abilities compared with the untreated one; regardless of the samples stored in vacuum or not. Apatite formed only on the AH-treated Ti surface. Therefore, subjecting Ti dental implants to the AH treatment and storing them in vacuum should help prevent their surfaces from getting contaminated. Further, it is expected that AH-treated Ti dental implants controllably aged during a shelf storage will exhibit high stability and bone-bonding bioactivity. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1453-1460, 2017.


Asunto(s)
Álcalis/química , Implantes Dentales , Calor , Titanio/química , Propiedades de Superficie , Vacio
12.
Biomaterials ; 112: 122-132, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27760396

RESUMEN

The surface and substrate of a cross-linked polyethylene (CLPE) liner are designed to achieve resistance against oxidative degradation in the construction of hip joint replacements. In this study, we aimed to evaluate the oxidative degradation caused by lipid absorption of a highly hydrophilic nanometer-scaled thickness layer prepared by grafting a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer and a high-dose gamma-ray irradiated CLPE with vitamin E blending (HD-CLPE[VE]). The HD-CLPE(VE) and PMPC-grafted HD-CLPE(VE) exhibited extremely high oxidation resistance regardless of lipid absorption, even though residual-free radical levels were detectable. The water wettability of the PMPC-grafted CLPE and PMPC-grafted HD-CLPE(VE) surfaces was considerably greater than that of untreated surfaces. The hydrated PMPC-grafted layer also exhibited extremely low solubility for squalene. Lipids such as squalene and cholesterol esters diminished the oxidation resistance of CLPE despite the vitamin E improvement. Notably, the PMPC-grafted surface was resistant to lipid absorption and diffusion as well as subsequent lipid-related oxidative degradation, likely because of the presence of the hydrated PMPC-grafted layer. Together, these results provide preliminary evidence that the resistance against lipid absorption and diffusion of a hydrated PMPC-grafted layer might positively affect the extent of resistance to the in vivo oxidation of orthopedic implants.


Asunto(s)
Materiales Biocompatibles/química , Reactivos de Enlaces Cruzados/química , Lípidos/química , Fosforilcolina/análogos & derivados , Polietileno/química , Ácidos Polimetacrílicos/química , Agua/química , Absorción Fisicoquímica , Difusión , Ensayo de Materiales , Oxidación-Reducción , Fosforilcolina/química , Solubilidad , Propiedades de Superficie
13.
J Orthop Res ; 35(9): 2007-2016, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27813260

RESUMEN

To reduce the production of wear particles and subsequent aseptic loosening, we created a human articular cartilage-mimicked surface for a highly cross-linked polyethylene liner, whose surface grafted layer consisted of a biocompatible phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine). Although our previous in vitro findings showed that poly(2-methacryloyloxyethyl phosphorylcholine)-grafted particles were biologically inert and caused no subsequent bone resorptive responses, and poly(2-methacryloyloxyethyl phosphorylcholine) grafting markedly decreased wear in hip joint simulator tests, the clinical safety, and in vivo wear resistance of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted highly cross-linked polyethylene liners remained open to question. Therefore, in the present study, we evaluated clinical and radiographic outcomes of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted highly cross-linked polyethylene liners 5 years subsequent to total hip replacement in 68 consecutive patients. No reoperation was required for any reason, and no adverse events were associated with the implanted liners. The average Harris Hip Score increased from 38.6 preoperatively to 96.5 5 years postoperatively, and health-related quality of life, as indicated by the Short Form 36 Health Survey, improved. Radiographic analyses showed no periprosthetic osteolysis or implant migration. Between 1 and 5 years postoperatively, the mean steady-state wear rate was 0.002 mm/year, which represented a marked reduction relative to other highly cross-linked polyethylene liners, and appeared to be unaffected by patient-related or surgical factors. Although longer follow up is required, poly(2-methacryloyloxyethyl phosphorylcholine)-grafted highly cross-linked polyethylene liners improved mid-term clinical outcomes. The clinical safety and wear-resistance results are encouraging with respect to the improvement of long-term clinical outcomes with poly(2-methacryloyloxyethyl phosphorylcholine)-grafted highly cross-linked polyethylene liners. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2007-2016, 2017.


Asunto(s)
Artroplastia de Reemplazo de Cadera/instrumentación , Prótesis de Cadera/estadística & datos numéricos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polietileno , Diseño de Prótesis , Calidad de Vida , Radiografía , Estudios Retrospectivos
14.
Acta Biomater ; 40: 38-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27154499

RESUMEN

UNLABELLED: A highly efficient methodology for preparing a poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer on the surface of poly(ether ether ketone) (PEEK) was examined by photoinduced and self-initiated graft polymerization. To enhance the polymerization rate, we demonstrated the effects of inorganic salt additives in the feed monomer solution on thickness of grafted PMPC layer. Photoinduced polymerization occurred and the PMPC graft layer was successfully formed on the PEEK surface, regardless of inorganic salt additives. Moreover, it was clearly observed that the addition of inorganic salt enhanced the grafting thickness of PMPC layer on the surface even when the photoirradiation time was shortened. The addition of inorganic salt additives in the feed monomer solution enhanced the polymerization rate of MPC and resulted in thicker PMPC layers. In particular, we evaluated the effect of NaCl concentration and how this affected the polymerization rate and layer thickness. We considered that this phenomenon was due to the hydration of ions in the feed monomer solution and subsequent apparent increase in the MPC concentration. A PMPC layer with over 100-nm-thick, which was prepared by 5-min photoirradiation in 2.5mol/L inorganic salt aqueous solution, showed good wettability and protein adsorption resistance compared to that of untreated PEEK. Hence, we concluded that the addition of NaCl into the MPC feed solution would be a convenient and efficient method for preparing a graft layer on PEEK. STATEMENT OF SIGNIFICANCE: Photoinduced and self-initiated graft polymerization on the PEEK surface is one of the several methodologies available for functionalization. However, in comparison with free-radical polymerization, the efficiency of polymerization at the solid-liquid interface is limited. Enhancement of the polymerization rate for grafting could solve the problem. In this study, we observed the acceleration of the polymerization rate of MPC in an aqueous solution by the addition of inorganic salt. The salt itself did not show any adverse effects on the radical polymerization; however, the apparent concentration of the monomer in feed may be increased due to the hydration of ions attributed to salt additives. We could obtain PMPC-grafted PEEK with sufficient PMPC thickness to obtain good functionality with only 5-min photoirradiation by using 2.5mol/L NaCl in the feed solution.


Asunto(s)
Cetonas , Fosforilcolina/análogos & derivados , Polietilenglicoles , Ácidos Polimetacrílicos , Cloruro de Sodio/química , Benzofenonas , Cetonas/síntesis química , Cetonas/química , Fosforilcolina/síntesis química , Fosforilcolina/química , Polietilenglicoles/síntesis química , Polietilenglicoles/química , Polímeros , Ácidos Polimetacrílicos/síntesis química , Ácidos Polimetacrílicos/química , Humectabilidad
15.
J Biomed Mater Res A ; 104(1): 37-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26148654

RESUMEN

Sterilization using high-energy irradiation is an important aspect of implementing an ultra-high molecular weight polyethylene acetabular liner in total hip arthroplasty (THA). In this study, we evaluate the effects of extra irradiations such as gamma-ray or plasma irradiation during sterilization of the poly(2-methacryloyloxyethyl phosphorylcholine [MPC]) (PMPC) surface and cross-linked polyethylene (CLPE) substrate of a PMPC-grafted CLPE acetabular liner. The PMPC-grafted surface yielded high wettability and low friction properties regardless of the extra irradiations as compared with untreated CLPE. During a hip simulator test, wear resistance of the PMPC-grafted CLPE liner was maintained after extra irradiation, which is due to the high wettability characteristics of the PMPC surface. In particular, the PMPC-grafted CLPE liner treated with plasma irradiation showed greater wettability and wear resistance than that with gamma-ray irradiation. However, we could not clearly observe the changes in chemical properties and morphology of the PMPC surface after both extra irradiations. The physical and mechanical properties attributed to CLPE substrate performance were also unchanged. In contrast, PMPC-grafted CLPE treated with plasma irradiation showed improved oxidation resistance as compared to that treated with gamma-ray irradiation after accelerated aging. Thus, we conclude that PMPC-grafted CLPE with plasma irradiation has promise as a lifelong solution for bearing in THA.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Rayos gamma , Metacrilatos/química , Fosforilcolina/análogos & derivados , Polietileno/química , Radicales Libres/análisis , Fricción , Prótesis de Cadera , Humanos , Metacrilatos/síntesis química , Fosforilcolina/síntesis química , Fosforilcolina/química , Espectroscopía de Fotoelectrones , Polietileno/síntesis química , Propiedades de Superficie , Agua/química
16.
Biomed Res Int ; 2015: 435432, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26583106

RESUMEN

The wear and creep deformation resistances of polymeric orthopedic bearing materials are both important for extending their longevity. In this study, we evaluated the wear and creep deformation resistances, including backside damage, of different polyethylene (PE) materials, namely, conventional PE, cross-linked PE (CLPE), and poly(2-methacryloyloxyethyl phosphorylcholine)- (PMPC-) grafted CLPE, through wear tests and finite element analysis. The gravimetric and volumetric degrees of wear of disks (3 or 6 mm in thickness) of these materials against a cobalt-chromium-molybdenum alloy pin were examined using a multidirectional pin-on-disk tester. Cross-linking and PMPC grafting decreased the gravimetric wear of the PE disks significantly. The volumetric wear at the bearing surface and the volumetric penetration in the backside of the 3-mm thick PE disk were higher than those of the 6-mm thick PE disk, regardless of the bearing material. The geometrical changes induced in the PE disks consisted of creep, because the calculated internal von Mises stress at the bearing side of all disks and that at the backside of the 3-mm thick disks exceeded their actual yield strengths. A highly hydrated bearing surface layer, formed by PMPC grafting, and a cross-linking-strengthened substrate of adequate thickness are essential for increasing the wear and creep deformation resistances.


Asunto(s)
Materiales Biocompatibles/química , Dispositivos de Fijación Ortopédica , Fosforilcolina/análogos & derivados , Polietileno/química , Ácidos Polimetacrílicos/química , Materiales Biocompatibles/uso terapéutico , Análisis de Elementos Finitos , Humanos , Ensayo de Materiales , Fosforilcolina/química , Fosforilcolina/uso terapéutico , Polietileno/uso terapéutico , Ácidos Polimetacrílicos/uso terapéutico , Propiedades de Superficie
17.
Proc Inst Mech Eng H ; 229(7): 506-14, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26036469

RESUMEN

Surface modification by grafting of biocompatible phospholipid polymer onto the surface of artificial joint material has been proposed to reduce the risk of aseptic loosening and improve the durability. Poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted cross-linked polyethylene (CLPE) has shown promising results for reducing wear of CLPE. The main lubrication mechanism for the PMPC layer is considered to be the hydration lubrication. In this study, the lubrication properties of PMPC-grafted CLPE were evaluated in reciprocating friction test with rehydration process by unloading in various lubricants. The start-up friction of PMPC-grafted CLPE was reduced, and the damage of PMPC layer was suppressed by rehydration in water or hyaluronic acid solutions. In contrast, the start-up friction of PMPC-grafted CLPE increased in fetal bovine serum solution, and the damage for PMPC layer was quite noticeable. Interestingly, the start-up friction of PMPC-grafted CLPE was reduced in fetal bovine serum solution containing hyaluronic acid, and the damage of the PMPC layer was suppressed. These results indicate that the rehydration by unloading and hyaluronic acid are elemental in maximizing the lubrication effect of hydrated PMPC layer.


Asunto(s)
Materiales Biocompatibles/química , Lubricantes/química , Fosforilcolina/análogos & derivados , Polietileno/química , Ácidos Polimetacrílicos/química , Fricción , Prótesis Articulares , Ensayo de Materiales , Fosforilcolina/química , Agua/química
18.
Acta Biomater ; 24: 24-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26050636

RESUMEN

In the construction of artificial hip joint replacements, the surface and substrate of a cross-linked polyethylene (CLPE) liner are designed to achieve high wear resistance and prevent infection by bacteria. In this study, we fabricated a highly hydrophilic and antibiofouling poly(2-methacryloyloxyethyl phosphorylcholine [MPC]) (PMPC)-graft layer on the vitamin E-blended CLPE (HD-CLPE(VE)) surface. The 100-nm-thick, smooth, and electrically neutral PMPC layer was successfully fabricated on the HD-CLPE(VE) surface using photoinduced graft polymerization. The PMPC-grafted HD-CLPE(VE) was found to prevent bacterial adherence and biofilm formation on the surface because of the formation of a highly hydrophilic polyzwitterionic layer on the surface of HD-CLPE(VE), which can serve as an extremely efficient antibiofouling layer. The number of bacterial adhered on the PMPC-grafted HD-CLPE(VE) surface was reduced by 100-fold or more by PMPC grafting, regardless of the biofilm-production characteristics of the strains. In contrast, vitamin E blending did not affect bacterial adhesion. Moreover, the number of planktonic bacteria did not differ significantly, regardless of PMPC grafting and vitamin E blending. In conclusion, the PMPC-grafted HD-CLPE(VE) provided bacteriostatic effects associated with smooth, highly hydrophilic surfaces with a neutral electrostatic charge owing to the zwitterionic structure of the MPC unit. Thus, this modification may prove useful for the production of artificial hip joint replacement materials. STATEMENT OF SIGNIFICANCE: Our preliminary in vitro findings suggest that improved bacteriostatic performance of the HD-CLPE(VE) surface in orthopedic implants is possible via PMPC grafting. The results also indicate that surface modifications affect the anti-infection properties of the orthopedic implants and demonstrate that the application of a PMPC-grafted HD-CLPE(VE) surface may be a promising approach to extend the longevity and clinical outcomes of total hip arthroplasty. Further research is needed to evaluate the resistance to infection of PMPC-grafted HD-CLPE(VE) in terms of the varieties of biofilm formation tests including fluid flow conditions and animal experiments, which may offer useful clues to the possible performance of these materials in vivo.


Asunto(s)
Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Prótesis de Cadera/microbiología , Fosforilcolina/análogos & derivados , Polietileno/química , Ácidos Polimetacrílicos/química , Staphylococcus aureus/fisiología , Vitamina E/química , Humanos , Fosforilcolina/química
19.
J Orthop Res ; 33(7): 1103-10, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25764495

RESUMEN

The use of larger femoral heads to prevent the dislocation of artificial hip joints has recently become more common. However, concerns about the subsequent use of thinner polyethylene liners and their effects on wear rate have arisen. Previously, we prepared and evaluated the biological and mechanical effects of a novel highly cross-linked polyethylene (CLPE) liner with a nanometer-scaled graft layer of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). Our findings showed that the PMPC-grafted particles were biologically inert and caused no subsequent bone resorptive responses and that the PMPC-grafting markedly decreased wear in a hip joint simulator. However, the metal or ceramic femoral heads used in this previous study had a diameter of 26 mm. Here, we investigated the wear-resistance of the PMPC-grafted CLPE liner with a 40-mm femoral head during 10 × 10(6) cycles of loading in the hip joint simulator. The results provide preliminary evidence that the grafting markedly decreased gravimetric wear rate and the volume of wear particles, even when coupled with larger femoral heads. Thus, we believe the PMPC-grafting will prolong artificial hip joint longevity both by preventing aseptic loosening and by improving the stability of articular surface.


Asunto(s)
Prótesis de Cadera , Fosforilcolina/análogos & derivados , Polietileno , Ácidos Polimetacrílicos , Articulación de la Cadera/fisiología , Humanos , Ensayo de Materiales
20.
Clin Orthop Relat Res ; 473(3): 942-51, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25342007

RESUMEN

BACKGROUND: Modifying the surface and substrate of a crosslinked polyethylene (CLPE) liner may be beneficial for high wear resistance as well as high oxidative stability and excellent mechanical properties, which would be useful in contributing to the long-term performance of orthopaedic bearings. A grafted poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) layer on a vitamin E-blended crosslinked PE (HD-CLPE[VE]) surface may provide hydrophilicity and lubricity without compromising the oxidative stability or mechanical properties. QUESTIONS/PURPOSES: (1) Will the modifications (PMPC grafting and vitamin E blending) affect the lubrication characteristics of the CLPE surface? (2) Will the modifications affect wear resistance? (3) Will the modifications affect fatigue resistance? METHODS: We investigated the effects of surface and substrate modifications (PMPC grafting and vitamin E blending) on the wear and fatigue fracture of thin CLPE samples. For each of the untreated and PMPC-grafted CLPE surfaces with and without vitamin E blended (four groups), wettability and lubricity surface analyses were conducted as well as multidirectional wear and impact-to-wear tests using a pin-on-disk testing machine. RESULTS: The water wettability and lubricity (CLPE [mean ± 95% confidence interval]: 23.2° ± 1.8°, 0.005 ± 0.001; HD-CLPE[VE]: 26.0° ± 2.3°, 0.009 ± 0.003) of the PMPC-grafted surfaces were greater (p < 0.001) than that (CLPE: 90.3° ± 1.2°, 0.067 ± 0.015; HD-CLPE[VE]: 90.8° ± 2.0°, 0.063 ± 0.008) of the untreated surface regardless of vitamin E additives. It was observed that the PMPC grafting (CLPE: 0.23 ± 0.06 mg; HD-CLPE[VE]: 0.05 ± 0.10 mg) was associated with reduced gravimetric wear (CLPE: 0.53 ± 0.08 mg, p = 0.004 HD-CLPE[VE]: 0.23 ± 0.07 mg, p = 0.038) in the multidirectional wear test. The PMPC-grafted surface characteristics did not appear to affect the impact fatigue resistance regardless of vitamin E blending. CONCLUSIONS: PMPC grafting improved the surface hydrophilicity and lubricity, and it reduced the gravimetric wear in terms of multidirectional sliding. It did not result in differences in terms of the impact-to-unidirectional sliding regardless of vitamin E blending. Further research is needed to evaluate the wear resistance of PMPC-grafted HD-CLPE(VE) in long-term hip simulator tests under normal and severe conditions, which may offer useful clues to the possible performance of these materials in vivo. CLINICAL RELEVANCE: Our preliminary in vitro findings suggest that some improvement in the wear performance of crosslinked polyethylene acetabular liners in total hip arthroplasty could be obtained using PMPC grafting. Further research is needed to evaluate the wear resistance of PMPC-grafted HD-CLPE(VE) in long-term hip simulator tests under normal and severe conditions, which may offer useful clues to the possible performance of these materials in vivo.


Asunto(s)
Materiales Biocompatibles/química , Ensayo de Materiales , Polietilenos/química , Vitamina E/química , Humanos , Proyectos Piloto , Propiedades de Superficie , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA