Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Front Bioinform ; 3: 1275593, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025398

RESUMEN

Background: Automating data analysis pipelines is a key requirement to ensure reproducibility of results, especially when dealing with large volumes of data. Here we assembled automated pipelines for the analysis of High-throughput Sequencing (HTS) data originating from RNA-Seq, ChIP-Seq and Germline variant calling experiments. We implemented these workflows in Common workflow language (CWL) and evaluated their performance by: i) reproducing the results of two previously published studies on Chronic Lymphocytic Leukemia (CLL), and ii) analyzing whole genome sequencing data from four Genome in a Bottle Consortium (GIAB) samples, comparing the detected variants against their respective golden standard truth sets. Findings: We demonstrated that CWL-implemented workflows clearly achieved high accuracy in reproducing previously published results, discovering significant biomarkers and detecting germline SNP and small INDEL variants. Conclusion: CWL pipelines are characterized by reproducibility and reusability; combined with containerization, they provide the ability to overcome issues of software incompatibility and laborious configuration requirements. In addition, they are flexible and can be used immediately or adapted to the specific needs of an experiment or study. The CWL-based workflows developed in this study, along with version information for all software tools, are publicly available on GitHub (https://github.com/BiodataAnalysisGroup/CWL_HTS_pipelines) under the MIT License. They are suitable for the analysis of short-read (such as Illumina-based) data and constitute an open resource that can facilitate automation, reproducibility and cross-platform compatibility for standard bioinformatic analyses.

2.
Appetite ; 176: 106096, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35644308

RESUMEN

The progress in artificial intelligence and machine learning algorithms over the past decade has enabled the development of new methods for the objective measurement of eating, including both the measurement of eating episodes as well as the measurement of in-meal eating behavior. These allow the study of eating behavior outside the laboratory in free-living conditions, without the need for video recordings and laborious manual annotations. In this paper, we present a high-level overview of our recent work on intake monitoring using a smartwatch, as well as methods using an in-ear microphone. We also present evaluation results of these methods in challenging, real-world datasets. Furthermore, we discuss use-cases of such intake monitoring tools for advancing research in eating behavior, for improving dietary monitoring, as well as for developing evidence-based health policies. Our goal is to inform researchers and users of intake monitoring methods regarding (i) the development of new methods based on commercially available devices, (ii) what to expect in terms of effectiveness, and (iii) how these methods can be used in research as well as in practical applications.


Asunto(s)
Inteligencia Artificial , Conducta Alimentaria , Algoritmos , Dieta , Humanos , Comidas
3.
Cells ; 11(4)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35203258

RESUMEN

MicroRNAs (miRNAs) create systems networks and gene-expression circuits through molecular signaling and cell interactions that contribute to health imbalance and the emergence of cardiovascular disorders (CVDs). Because the clinical phenotypes of CVD patients present a diversity in their pathophysiology and heterogeneity at the molecular level, it is essential to establish genomic signatures to delineate multifactorial correlations, and to unveil the variability seen in therapeutic intervention outcomes. The clinically validated miRNA biomarkers, along with the relevant SNPs identified, have to be suitably implemented in the clinical setting in order to enhance patient stratification capacity, to contribute to a better understanding of the underlying pathophysiological mechanisms, to guide the selection of innovative therapeutic schemes, and to identify innovative drugs and delivery systems. In this article, the miRNA-gene networks and the genomic signatures resulting from the SNPs will be analyzed as a method of highlighting specific gene-signaling circuits as sources of molecular knowledge which is relevant to CVDs. In concordance with this concept, and as a case study, the design of the clinical trial GESS (NCT03150680) is referenced. The latter is presented in a manner to provide a direction for the improvement of the implementation of pharmacogenomics and precision cardiovascular medicine trials.


Asunto(s)
Fármacos Cardiovasculares , Enfermedades Cardiovasculares , MicroARNs , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Farmacogenética/métodos , Medicina de Precisión/métodos
4.
Front Mol Biosci ; 9: 805541, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35187080

RESUMEN

Heterogeneity of the main ribosomal composition represents an emerging, yet debatable, mechanism of gene expression regulation with a purported role in ribosomopathies, a group of disorders caused by mutations in ribosomal protein genes (RPs). Ribosomopathies, mysteriously relate with tissue-specific symptoms (mainly anemia and cancer predisposition), despite the ubiquitous expression and necessity of the associated RPs. An outstanding question that may shed light into disease pathogenicity and provide potential pharmacological interventions, is whether and how the ribosomal composition is modified during, the highly affected by RP mutations, process of erythroid differentiation. To address this issue, we analyzed ribosome stoichiometry using an established model of erythroid differentiation, through sucrose gradient ultracentrifugation and quantitative proteomics. We found that differentiation associates with an extensive reprogramming of the overall ribosomal levels, characterized by an increase in monosomes and a decrease in polysomes. However, by calculating a stoichiometry score for each independent ribosomal protein, we found that the main ribosomal architecture remained invariable between immature and differentiated cells. In total, none of the 78 Ribosomal Proteins (RPs- 74 core RPs, Rack1, Fau and 2 paralogs) detected was statistically different between the samples. This data was further verified through antibody-mediated quantification of 6 representative RPs. Moreover, bioinformatic analysis of whole cell proteomic data derived out of 4 additional models of erythropoiesis revealed that RPs were co-regulated across these cell types, too. In conclusion, ribosomes maintain an invariant protein stoichiometry during differentiation, thus excluding ribosome heterogeneity from a potential mechanism of toxicity in ribosomopathies and other erythroid disorders.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6867-6870, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892684

RESUMEN

The consumption of tobacco has reached global epidemic proportions and is characterized as the leading cause of death and illness. Among the different ways of consuming tobacco (e.g., smokeless, cigars), smoking cigarettes is the most widespread. In this paper, we present a two-step, bottom-up algorithm towards the automatic and objective monitoring of cigarette-based, smoking behavior during the day, using the 3D acceleration and orientation velocity measurements from a commercial smartwatch. In the first step, our algorithm performs the detection of individual smoking gestures (i.e., puffs) using an artificial neural network with both convolutional and recurrent layers. In the second step, we make use of the detected puff density to achieve the temporal localization of smoking sessions that occur throughout the day. In the experimental section we provide extended evaluation regarding each step of the proposed algorithm, using our publicly-available, realistic Smoking Event Detection (SED) and Free-living Smoking Event Detection (SED-FL) datasets recorded under semi-controlled and free-living conditions, respectively. In particular, leave-one-subject-out (LOSO) experiments reveal an F1-score of 0.863 for the detection of puffs and an F1-score/Jaccard index equal to 0.878/0.604 towards the temporal localization of smoking sessions during the day. Finally, to gain further insight, we also compare the puff detection part of our algorithm with a similar approach found in the recent literature.


Asunto(s)
Fumar Cigarrillos , Productos de Tabaco , Redes Neurales de la Computación , Fumar , Muñeca
7.
BMC Cardiovasc Disord ; 21(1): 284, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103005

RESUMEN

BACKGROUND: Coronary artery disease (CAD) remains one of the leading causes of mortality worldwide and is associated with multiple inherited and environmental risk factors. This study is designed to identify, design, and develop a panel of genetic markers that combined with clinical and angiographic information, will facilitate the creation of a personalized risk prediction algorithm (GEnetic Syntax Score-GESS). GESS score could be a reliable tool for predicting cardiovascular risk for future adverse events and for guiding therapeutic strategies. METHODS: GESS (ClinicalTrials.gov Identifier: NCT03150680) is a prospective, non-interventional clinical study designed to enroll 1080 consecutive patients with no prior history of coronary revascularization procedure, who undergo scheduled or emergency coronary angiography in AHEPA, University General Hospital of Thessaloniki. Next generation sequencing (NGS) technology will be used to genotype specific single-nucleotide polymorphisms (SNPs) across the genome of study participants, which were identified as clinically relevant to CAD after extensive bioinformatic analysis of literature-based SNPs. Enrichment analyses of Gene Ontology-Molecular Function, Reactome Pathways and Disease Ontology terms were also performed to identify the top 15 statistically significant terms and pathways. Furthermore, the SYNTAX score will be calculated for the assessment of CAD severity of all patients based on their angiographic findings. All patients will be followed-up for one-year, in order to record any major adverse cardiovascular events. DISCUSSION: A group of 228 SNPs was identified through bioinformatic and pharmacogenomic analysis to be involved in CAD through a wide range of pathways and was correlated with various laboratory and clinical parameters, along with the patients' response to clopidogrel and statin therapy. The annotation of these SNPs revealed 127 genes being affected by the presence of one or more SNPs. The first patient was enrolled in the study in February 2019 and enrollment is expected to be completed until June 2021. Hence, GESS is the first trial to date aspiring to develop a novel risk prediction algorithm, the GEnetic Syntax Score, able to identify patients at high risk for complex CAD based on their molecular signature profile and ultimately promote pharmacogenomics and precision medicine in routine clinical settings. Trial registration GESS trial registration: ClinicalTrials.gov Number: NCT03150680. Registered 12 May 2017- Prospectively registered, https://clinicaltrials.gov/ct2/show/NCT03150680 .


Asunto(s)
Algoritmos , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/genética , Técnicas de Apoyo para la Decisión , Secuenciación de Nucleótidos de Alto Rendimiento , Polimorfismo de Nucleótido Simple , Proyectos de Investigación , Toma de Decisiones Clínicas , Enfermedad de la Arteria Coronaria/terapia , Progresión de la Enfermedad , Redes Reguladoras de Genes , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Grecia , Humanos , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo
8.
Sci Rep ; 11(1): 1632, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452324

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder with both motor and non-motor symptoms. Despite the progressive nature of PD, early diagnosis, tracking the disease's natural history and measuring the drug response are factors that play a major role in determining the quality of life of the affected individual. Apart from the common motor symptoms, i.e., tremor at rest, rigidity and bradykinesia, studies suggest that PD is associated with disturbances in eating behavior and energy intake. Specifically, PD is associated with drug-induced impulsive eating disorders such as binge eating, appetite-related non-motor issues such as weight loss and/or gain as well as dysphagia-factors that correlate with difficulties in completing day-to-day eating-related tasks. In this work we introduce Plate-to-Mouth (PtM), an indicator that relates with the time spent for the hand operating the utensil to transfer a quantity of food from the plate into the mouth during the course of a meal. We propose a two-step approach towards the objective calculation of PtM. Initially, we use the 3D acceleration and orientation velocity signals from an off-the-shelf smartwatch to detect the bite moments and upwards wrist micromovements that occur during a meal session. Afterwards, we process the upwards hand micromovements that appear prior to every detected bite during the meal in order to estimate the bite's PtM duration. Finally, we use a density-based scheme to estimate the PtM durations distribution and form the in-meal eating behavior profile of the subject. In the results section, we provide validation for every step of the process independently, as well as showcase our findings using a total of three datasets, one collected in a controlled clinical setting using standardized meals (with a total of 28 meal sessions from 7 Healthy Controls (HC) and 21 PD patients) and two collected in-the-wild under free living conditions (37 meals from 4 HC/10 PD patients and 629 meals from 3 HC/3 PD patients, respectively). Experimental results reveal an Area Under the Curve (AUC) of 0.748 for the clinical dataset and 0.775/1.000 for the in-the-wild datasets towards the classification of in-meal eating behavior profiles to the PD or HC group. This is the first work that attempts to use wearable Inertial Measurement Unit (IMU) sensor data, collected both in clinical and in-the-wild settings, towards the extraction of an objective eating behavior indicator for PD.


Asunto(s)
Conducta Alimentaria/fisiología , Boca/fisiología , Enfermedad de Parkinson/fisiopatología , Anciano , Área Bajo la Curva , Estudios de Casos y Controles , Discinesias , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento , Curva ROC , Máquina de Vectores de Soporte , Dispositivos Electrónicos Vestibles
9.
J Biol Res (Thessalon) ; 28(1): 2, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407944

RESUMEN

BACKGROUND: Erythroleukemia is caused by the uncontrolled multiplication of immature erythroid progenitor cells which fail to differentiate into erythrocytes. By directly targeting this class of malignant cells, the induction of terminal erythroid differentiation represents a vital therapeutic strategy for this disease. Erythroid differentiation involves the execution of a well-orchestrated gene expression program in which epigenetic enzymes play critical roles. In order to identify novel epigenetic mediators of differentiation, this study explores the effects of multiple, highly specific, epigenetic enzyme inhibitors, in murine and human erythroleukemia cell lines. RESULTS: We used a group of compounds designed to uniquely target the following epigenetic enzymes: G9a/GLP, EZH1/2, SMYD2, PRMT3, WDR5, SETD7, SUV420H1 and DOT1L. The majority of the probes had a negative impact on both cell proliferation and differentiation. On the contrary, one of the compounds, A-366, demonstrated the opposite effect by promoting erythroid differentiation of both cell models. A-366 is a selective inhibitor of the G9a methyltransferase and the chromatin reader Spindlin1. Investigation of the molecular mechanism of action revealed that A-366 forced cells to exit from the cell cycle, a fact that favored erythroid differentiation. Further analysis led to the identification of a group of genes that mediate the A-366 effects and include CDK2, CDK4 and CDK6. CONCLUSIONS: A-366, a selective inhibitor of G9a and Spindlin1, demonstrates a compelling role in the erythroid maturation process by promoting differentiation, a fact that is highly beneficial for patients suffering from erythroleukemia. In conclusion, this data calls for further investigation towards the delivery of epigenetic drugs and especially A-366 in hematopoietic disorders.

10.
Front Cardiovasc Med ; 8: 812182, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35118145

RESUMEN

Our study aims to develop a data-driven framework utilizing heterogenous electronic medical and clinical records and advanced Machine Learning (ML) approaches for: (i) the identification of critical risk factors affecting the complexity of Coronary Artery Disease (CAD), as assessed via the SYNTAX score; and (ii) the development of ML prediction models for accurate estimation of the expected SYNTAX score. We propose a two-part modeling technique separating the process into two distinct phases: (a) a binary classification task for predicting, whether a patient is more likely to present with a non-zero SYNTAX score; and (b) a regression task to predict the expected SYNTAX score accountable to individual patients with a non-zero SYNTAX score. The framework is based on data collected from the GESS trial (NCT03150680) comprising electronic medical and clinical records for 303 adult patients with suspected CAD, having undergone invasive coronary angiography in AHEPA University Hospital of Thessaloniki, Greece. The deployment of the proposed approach demonstrated that atherogenic index of plasma levels, diabetes mellitus and hypertension can be considered as important risk factors for discriminating patients into zero- and non-zero SYNTAX score groups, whereas diastolic and systolic arterial blood pressure, peripheral vascular disease and body mass index can be considered as significant risk factors for providing an accurate estimation of the expected SYNTAX score, given that a patient belongs to the non-zero SYNTAX score group. The experimental findings utilizing the identified set of important risk factors indicate a sufficient prediction performance for the Support Vector Machine model (classification task) with an F-measure score of ~0.71 and the Support Vector Regression model (regression task) with a median absolute error value of ~6.5. The proposed data-driven framework described herein present evidence of the prediction capacity and the potential clinical usefulness of the developed risk-stratification models. However, further experimentation in a larger clinical setting is needed to ensure the practical utility of the presented models in a way to contribute to a more personalized management and counseling of CAD patients.

11.
IEEE J Biomed Health Inform ; 25(1): 22-34, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32750897

RESUMEN

The increased worldwide prevalence of obesity has sparked the interest of the scientific community towards tools that objectively and automatically monitor eating behavior. Despite the study of obesity being in the spotlight, such tools can also be used to study eating disorders (e.g. anorexia nervosa) or provide a personalized monitoring platform for patients or athletes. This paper presents a complete framework towards the automated i) modeling of in-meal eating behavior and ii) temporal localization of meals, from raw inertial data collected in-the-wild using commercially available smartwatches. Initially, we present an end-to-end Neural Network which detects food intake events (i.e. bites). The proposed network uses both convolutional and recurrent layers that are trained simultaneously. Subsequently, we show how the distribution of the detected bites throughout the day can be used to estimate the start and end points of meals, using signal processing algorithms. We perform extensive evaluation on each framework part individually. Leave-one-subject-out (LOSO) evaluation shows that our bite detection approach outperforms four state-of-the-art algorithms towards the detection of bites during the course of a meal (0.923 F1 score). Furthermore, LOSO and held-out set experiments regarding the estimation of meal start/end points reveal that the proposed approach outperforms a relevant approach found in the literature (Jaccard Index of 0.820 and 0.821 for the LOSO and held-out experiments, respectively). Experiments are performed using our publicly available FIC and the newly introduced FreeFIC datasets.


Asunto(s)
Ingestión de Alimentos , Conducta Alimentaria , Humanos , Comidas , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador
12.
Sci Rep ; 10(1): 21370, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288807

RESUMEN

Parkinson's Disease (PD) is the second most common neurodegenerative disorder, affecting more than 1% of the population above 60 years old with both motor and non-motor symptoms of escalating severity as it progresses. Since it cannot be cured, treatment options focus on the improvement of PD symptoms. In fact, evidence suggests that early PD intervention has the potential to slow down symptom progression and improve the general quality of life in the long term. However, the initial motor symptoms are usually very subtle and, as a result, patients seek medical assistance only when their condition has substantially deteriorated; thus, missing the opportunity for an improved clinical outcome. This situation highlights the need for accessible tools that can screen for early motor PD symptoms and alert individuals to act accordingly. Here we show that PD and its motor symptoms can unobtrusively be detected from the combination of accelerometer and touchscreen typing data that are passively captured during natural user-smartphone interaction. To this end, we introduce a deep learning framework that analyses such data to simultaneously predict tremor, fine-motor impairment and PD. In a validation dataset from 22 clinically-assessed subjects (8 Healthy Controls (HC)/14 PD patients with a total data contribution of 18.305 accelerometer and 2.922 typing sessions), the proposed approach achieved 0.86/0.93 sensitivity/specificity for the binary classification task of HC versus PD. Additional validation on data from 157 subjects (131 HC/26 PD with a total contribution of 76.528 accelerometer and 18.069 typing sessions) with self-reported health status (HC or PD), resulted in area under curve of 0.87, with sensitivity/specificity of 0.92/0.69 and 0.60/0.92 at the operating points of highest sensitivity or specificity, respectively. Our findings suggest that the proposed method can be used as a stepping stone towards the development of an accessible PD screening tool that will passively monitor the subject-smartphone interaction for signs of PD and which could be used to reduce the critical gap between disease onset and start of treatment.


Asunto(s)
Aprendizaje Profundo , Enfermedad de Parkinson/diagnóstico , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Calidad de Vida , Curva ROC , Sensibilidad y Especificidad
13.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 494-497, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018035

RESUMEN

Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder after Alzheimer's disease, associated, among others, with motor symptoms such as resting tremor, rigidity and bradykinesia. At the same time, early diagnosis of PD is hindered by a high misdiagnosis rate and the subjective nature of the diagnosis process itself. Recent developments in mobile and wearable devices, such as smartphones and smartwatches, have allowed the automated detection and objective measurement of PD symptoms. In this paper we investigate the hypothesis that PD motor symptom degradation can be assessed by studying the in-meal behavior and modeling the food intake process. To achieve this, we use the inertial data from a commercial smartwatch to investigate the in-meal eating behavior of healthy controls and PD patients. In addition, we define and provide a methodology for calculating Plate-to-Mouth (PtM), an indicator that relates with the average time that the hand spends transferring food from the plate towards the mouth during the course of a meal. The presented experimental results, using our collected dataset of 28 participants (7 healthy controls and 21 PD patients), support our hypothesis. Results initially point out that PD patients have a higher PtM value than the healthy controls. Finally, using PtM we achieve a precision/recall/F1 of 0.882/0.714/0.789 towards classifying the meals from the PD patients and healthy controls.


Asunto(s)
Enfermedad de Parkinson , Humanos , Hipocinesia , Comidas , Boca , Movimiento
14.
Nutrients ; 12(7)2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32708668

RESUMEN

Unintentional weight loss has been observed among Parkinson's disease (PD) patients. Changes in energy intake (EI) and eating behavior, potentially caused by fine motor dysfunction and eating-related symptoms, might contribute to this. The primary aim of this study was to investigate differences in objectively measured EI between groups of healthy controls (HC), early (ESPD) and advanced stage PD patients (ASPD) during a standardized lunch in a clinical setting. The secondary aim was to identify clinical features and eating behavior abnormalities that explain EI differences. All participants (n = 23 HC, n = 20 ESPD, and n = 21 ASPD) went through clinical evaluations and were eating a standardized meal (200 g sausages, 400 g potato salad, 200 g apple purée and 500 mL water) in front of two video cameras. Participants ate freely, and the food was weighed pre- and post-meal to calculate EI (kcal). Multiple linear regression was used to explain group differences in EI. ASPD had a significantly lower EI vs. HC (-162 kcal, p < 0.05) and vs. ESPD (-203 kcal, p < 0.01) when controlling for sex. The number of spoonfuls, eating problems, dysphagia and upper extremity tremor could explain most (86%) of the lower EI vs. HC, while the first three could explain ~50% vs. ESPD. Food component intake analysis revealed significantly lower potato salad and sausage intakes among ASPD vs. both HC and ESPD, while water intake was lower vs. HC. EI is an important clinical target for PD patients with an increased risk of weight loss. Our results suggest that interventions targeting upper extremity tremor, spoonfuls, dysphagia and eating problems might be clinically useful in the prevention of unintentional weight loss in PD. Since EI was lower in ASPD, EI might be a useful marker of disease progression in PD.


Asunto(s)
Ingestión de Energía/fisiología , Conducta Alimentaria/fisiología , Almuerzo , Fenómenos Fisiológicos de la Nutrición/fisiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Pérdida de Peso , Anciano , Biomarcadores , Estudios Transversales , Trastornos de Deglución , Progresión de la Enfermedad , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Índice de Severidad de la Enfermedad , Temblor
15.
Front Oncol ; 10: 521, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411592

RESUMEN

Innovative tumor profiling methodologies are utilized to elucidate the pharmacogenomic landscape of tumor cells in order to support the molecularly guided delivery of therapeutics. Indeed, improved clinical outcomes are achieved in oncology practice by providing the physicians with expert-guided, standardized, and easily interpretable knowledge, translated from molecular profiling analysis to support clinical decision-making. However, there is still limited utilization of the technology especially in small private oncology practices. In this work, we analyzed how molecularly guided interventions in 17 consented cancer patients led to an overall improvement of disease response rates in a private oncology center. The precision medicine strategy was based on the OncoDEEP™ profiling solutions and focused on finding clinically actionable relationships between tumor biomarkers and drug responses. The obtained data support the notion that (a) following the pharmacogenomic-derived recommendations favorably impacted cancer therapy progression, and (b) the earlier profiling followed by the delivery of molecularly targeted therapy led to more durable and improved pharmacological response rates. Moreover, we report the example of a patient with metastatic gastric adenocarcinoma who, based on the molecular profiling data, received an off-label therapy that resulted in a complete response and a current cancer-free maintenance status. Overall, our data provide a paradigm on how molecular tumor profiling can improve decision-making in the routine private oncology practice.

16.
Front Psychol ; 11: 612835, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519632

RESUMEN

Human-Computer Interaction (HCI) and games set a new domain in understanding people's motivations in gaming, behavioral implications of game play, game adaptation to player preferences and needs for increased engaging experiences in the context of HCI serious games (HCI-SGs). When the latter relate with people's health status, they can become a part of their daily life as assistive health status monitoring/enhancement systems. Co-designing HCI-SGs can be seen as a combination of art and science that involves a meticulous collaborative process. The design elements in assistive HCI-SGs for Parkinson's Disease (PD) patients, in particular, are explored in the present work. Within this context, the Game-Based Learning (GBL) design framework is adopted here and its main game-design parameters are explored for the Exergames, Dietarygames, Emotional games, Handwriting games, and Voice games design, drawn from the PD-related i-PROGNOSIS Personalized Game Suite (PGS) (www.i-prognosis.eu) holistic approach. Two main data sources were involved in the study. In particular, the first one includes qualitative data from semi-structured interviews, involving 10 PD patients and four clinicians in the co-creation process of the game design, whereas the second one relates with data from an online questionnaire addressed by 104 participants spanning the whole related spectrum, i.e., PD patients, physicians, software/game developers. Linear regression analysis was employed to identify an adapted GBL framework with the most significant game-design parameters, which efficiently predict the transferability of the PGS beneficial effect to real-life, addressing functional PD symptoms. The findings of this work can assist HCI-SG designers for designing PD-related HCI-SGs, as the most significant game-design factors were identified, in terms of adding value to the role of HCI-SGs in increasing PD patients' quality of life, optimizing the interaction with personalized HCI-SGs and, hence, fostering a collaborative human-computer symbiosis.

17.
NAR Genom Bioinform ; 2(4): lqaa088, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33575632

RESUMEN

Ribosomal genes produce the constituents of the ribosome, one of the most conserved subcellular structures of all cells, from bacteria to eukaryotes, including animals. There are notions that some protein-coding ribosomal genes vary in their roles across species, particularly vertebrates, through the involvement of some in a number of genetic diseases. Based on extensive sequence comparisons and systematic curation, we establish a reference set for ribosomal proteins (RPs) in eleven vertebrate species and quantify their sequence conservation levels. Moreover, we correlate their coordinated gene expression patterns within up to 33 tissues and assess the exceptional role of paralogs in tissue specificity. Importantly, our analysis supported by the development and use of machine learning models strongly proposes that the variation in the observed tissue-specific gene expression of RPs is rather species-related and not due to tissue-based evolutionary processes. The data obtained suggest that RPs exhibit a complex relationship between their structure and function that broadly maintains a consistent expression landscape across tissues, while most of the variation arises from species idiosyncrasies. The latter may be due to evolutionary change and adaptation, rather than functional constraints at the tissue level throughout the vertebrate lineage.

18.
IEEE J Biomed Health Inform ; 24(9): 2559-2569, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-31880570

RESUMEN

Parkinson's Disease (PD) is a slowly evolving neurological disease that affects about [Formula: see text] of the population above 60 years old, causing symptoms that are subtle at first, but whose intensity increases as the disease progresses. Automated detection of these symptoms could offer clues as to the early onset of the disease, thus improving the expected clinical outcomes of the patients via appropriately targeted interventions. This potential has led many researchers to develop methods that use widely available sensors to measure and quantify the presence of PD symptoms such as tremor, rigidity and braykinesia. However, most of these approaches operate under controlled settings, such as in lab or at home, thus limiting their applicability under free-living conditions. In this work, we present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device. We propose a Multiple-Instance Learning approach, wherein a subject is represented as an unordered bag of accelerometer signal segments and a single, expert-provided, tremor annotation. Our method combines deep feature learning with a learnable pooling stage that is able to identify key instances within the subject bag, while still being trainable end-to-end. We validate our algorithm on a newly introduced dataset of 45 subjects, containing accelerometer signals collected entirely in-the-wild. The good classification performance obtained in the conducted experiments suggests that the proposed method can efficiently navigate the noisy environment of in-the-wild recordings.


Asunto(s)
Enfermedad de Parkinson , Temblor , Algoritmos , Humanos , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico , Teléfono Inteligente , Temblor/diagnóstico
19.
Data Brief ; 25: 104210, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31334320

RESUMEN

SRPK1 is an evolutionary conserved protein kinase that specifically phosphorylates its substrates at serine residues located within arginine-serine-rich (RS) domains. We have previously reported the existence of a second less abundant isoform in humans, SRPK1a, which is formed from alternative splicing of the SRPK1 gene and contains an insertion of 171 amino acids at its N-terminal domain (Nikolakaki et al., 2001). In the NCBI database SRPK1a is annotated as a related to SRPK1-mRNA sequence coding for protein CAC39299.1. Here, we present data on the conservation of the extra sequence of SRPK1a in mammals. Furthermore, the retrieved sequences were comparatively analyzed and data on their evolutionary origin and relationships are also presented.

20.
Bioinformatics ; 35(17): 3206-3207, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30668641

RESUMEN

SUMMARY: InterMineR is a package designed to provide a flexible interface between the R programming environment and biological databases built using the InterMine platform. The package offers access to the flexible query builder and the library of term enrichment tools of the InterMine framework, as well as interoperability with other Bioconductor packages. This facilitates automation of data retrieval tasks as well as downstream analysis with existing statistical tools in the R environment. AVAILABILITY AND IMPLEMENTATION: InterMineR is free and open source, released under the LGPL licence and available from the Bioconductor project and Github (https://bioconductor.org/packages/release/bioc/html/InterMineR.html, https://github.com/intermine/interMineR). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Bases de Datos Factuales , Almacenamiento y Recuperación de la Información
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...