Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 700242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34456943

RESUMEN

Synthetic elicitors of the salicylic acid (SA) and jasmonic acid (JA) plant defense pathways can be used to increase crop protection against herbivores and pathogens. In this study, we tested the hypothesis that elicitors of plant defenses interact with pathogen infection to influence crop resistance against vector and nonvector herbivores. To do so, we employed a trophic system comprising of cranberries (Vaccinium macrocarpon), the phytoplasma that causes false blossom disease, and two herbivores-the blunt-nosed leafhopper (Limotettix vaccinii), the vector of false blossom disease, and the nonvector gypsy moth (Lymantria dispar). We tested four commercial elicitors, including three that activate mainly SA-related plant defenses (Actigard, LifeGard, and Regalia) and one activator of JA-related defenses (Blush). A greenhouse experiment in which phytoplasma-infected and uninfected plants received repeated exposure to elicitors revealed that both phytoplasma infection and elicitor treatment individually improved L. vaccinii and L. dispar mass compared to uninfected, untreated controls; however, SA-based elicitor treatments reduced L. vaccinii mass on infected plants. Regalia also improved L. vaccinii survival. Phytoplasma infection reduced plant size and mass, increased levels of nitrogen (N) and SA, and lowered carbon/nitrogen (C/N) ratios compared to uninfected plants, irrespective of elicitor treatment. Although none of our elicitor treatments influenced transcript levels of a phytoplasma-specific marker gene, all of them increased N and reduced C/N levels; the three SA activators also reduced JA levels. Taken together, our findings reveal positive effects of both phytoplasma infection and elicitor treatment on the performance of L. vaccinii and L. dispar in cranberries, likely via enhancement of plant nutrition and changes in phytohormone profiles, specifically increases in SA levels and corresponding decreases in levels of JA. Thus, we found no evidence that the tested elicitors of plant defenses increase resistance to insect herbivores or reduce disease incidence in cranberries.

2.
Biology (Basel) ; 11(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35053043

RESUMEN

Conotrachelus nenuphar Herbst (Coleoptera: Curculionidae) is a key pest of stone and pome fruits in the United States. Application of certain entomopathogenic nematode (EPN) species has shown efficacy in some crops when targeting the larval stage of C. nenuphar in soil. To date, however, no EPNs have been tested for the control of this pest in highbush blueberries. In 2020, laboratory and field studies were conducted to: (1) determine the persistence of Steinernema riobrave, S. carpocapsae, S. feltiae, and Heterorhabditis bacteriophora in acidic blueberry soil; (2) compare the virulence of these EPNs to C. nenuphar larvae and pupae; and (3) compare the efficacy of these EPN species to control this pest in blueberry fields. The greatest persistence in blueberry soil was exhibited by S. riobrave followed by S. carpocapsae. Superior virulence was observed in S. riobrave against C. nenuphar larvae and pupae. Promising levels of virulence were also observed in S. carpocapsae and S. feltiae against the larvae, but S. scarabaei had low virulence. In the field, S. riobrave provided significantly higher levels of C. nenuphar suppression (90%) than the other EPNs. The field efficacy of S. riobrave against C. nenuphar at low and high rates was confirmed in 2021. Steinernema riobrave has the potential to become an important component in the management of C. nenuphar in highbush blueberry.

3.
J Insect Sci ; 20(6)2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33367729

RESUMEN

Due to changes in pest management practices, farmers' reports of severe feeding injury to cranberries, Vaccinium macrocarpon Aiton Ericales: Ericaceae, caused by the cranberry toad-bug, Phylloscelis rubra Ball, have increased in recent years in New Jersey (United States). Currently, however, limited information is available on the effects of P. rubra feeding or density of individuals needed to cause injury to cranberry vines and fruit. In 2015‒2017, we conducted studies to characterize injury to cranberry at a range of P. rubra densities by using cages in a screen-house and field, to establish a correlation between P. rubra density and crop injury in an open field experiment, and to measure the effects of P. rubra injury on the nutritional content (i.e., amounts of macro- and microelements) of cranberry vines. Phylloscelis rubra feeding on cranberry vines produced typical injury symptoms at relatively low densities (i.e., 2 individuals per vine in field cages or <10 individuals per sweep net sample in open fields), which included discolored (yellowish or reddish) or dead (brown) vines. This vine injury could lead to reductions in fruit mass and total fruit number. However, P. rubra injury to cranberry vines did not alter their nutritional composition. In general, this study highlights the ability of P. rubra to cause substantial injury to cranberry vines even when population densities were relatively low, which could result in declines in fruit production (quality and quantity). Therefore, infestations by P. rubra in cranberries must be considered when making pest management decisions in regions where this insect is present.


Asunto(s)
Hemípteros , Vaccinium macrocarpon , Animales , Control de Insectos , New Jersey , Control de Plagas
4.
Insects ; 10(12)2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31775223

RESUMEN

Methyl salicylate (MeSA) is an herbivore-induced plant volatile (HIPV) known to attract the natural enemies of herbivores in agro-ecosystems; however, whether this attraction leads to an increase in natural enemy functioning, i.e., predation, remains largely unknown. Here, we monitored for 2 years (2011-2012) the response of herbivores and natural enemies to MeSA lures (PredaLure) by using sticky and pitfall traps in cranberry bogs. In addition, European corn borer, Ostrinia nubilalis, egg masses were used to determine whether natural enemy attraction to MeSA leads to higher predation. In both years, MeSA increased adult hoverfly captures on sticky traps and augmented predation of O. nubilalis eggs. However, MeSA also attracted more phytophagous thrips and, in 2012, more plant bugs (Miridae) to sticky traps. Furthermore, we used surveillance cameras to record the identity of natural enemies attracted to MeSA and measure their predation rate. Video recordings showed that MeSA lures increase visitation by adult lady beetles, adult hoverflies, and predatory mites to sentinel eggs, and predation of these eggs doubled compared to no-lure controls. Our data indicate that MeSA lures increase predator attraction, resulting in increased predation; thus, we provide evidence that attraction to HIPVs can increase natural enemy functioning in an agro-ecosystem.

5.
Insects ; 10(4)2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31010251

RESUMEN

This 2-year study (2013-2014) assessed the efficacy of an odor-baited "trap bush" approach to aggregate plum curculio, Conotrachelus nenuphar, adult injury, i.e., number of oviposition-scared fruit, in four commercial highbush blueberry farms in New Jersey (USA). In each farm, we compared fruit injury in bushes baited with grandisoic acid and benzaldehyde along the perimeter of trap-bush plots versus unbaited bushes in control plots. We also measured the amount of fruit injury in neighboring bushes (i.e., spillover effect) and in the plots' interior. In both years, the amount of fruit injury by C. nenuphar adults was greater on and near odor-baited bushes in trap-bush plots compared with those on and near unbaited bushes in control plots, indicative of aggregation. Injury in unbaited bushes neighboring trap bushes was often greater than unbaited bushes in control plots, providing some evidence for a spillover effect. However, no difference in fruit injury was found between interior trap-bush and control plots. Therefore, odor-baited trap bushes can be used in blueberries to manipulate C. nenuphar foraging behavior, i.e., aggregate adults, without compromising injury in field interiors. Under this approach, insecticides could then be targeted at only a few (perimeter-row) bushes within fields rather than entire fields.

6.
J Insect Sci ; 18(2)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31329904

RESUMEN

The cranberry weevil, Anthonomus musculus Say (Coleoptera: Curculionidae), is a key (univoltine) pest of highbush blueberries in the northeast United States. To date, however, no trapping system has been developed to successfully monitor this pest. In 2012-2014, studies were conducted in commercial highbush blueberry farms in New Jersey to 1) evaluate the efficacy of various commercially available traps, designed for other weevil species (e.g., pepper weevil, plum curculio, boll weevil, red palm weevil, and black vine weevil), in capturing A. musculus adults; 2) test whether the relative location of traps within the blueberry canopy affects adult captures and 3) determine the effects of different colored (yellow, white, green, red, blue, brown, and black) sticky traps on weevil captures. For a comparison with existing techniques, we also monitored the number of overwintered adult weevils on blueberry bushes using beat sheet sampling. Of all traps and colors tested, the most A. musculus adults were caught on yellow sticky traps and more adults were captured when these traps were placed at the bottom half of the blueberry canopy, i.e., 0.5-1.0 m above ground. Most weevils were caught on colored traps late in the season (i.e., during bloom), which corresponds mostly to the second (summer) adult generation. Thus, number of overwintered adults caught on traps did not correlate with those on bushes. Although our study identified traps that can be used to capture A. musculus adults, these traps alone (i.e., without semiochemicals) have so far limited applicability for monitoring overwintered adult weevils in highbush blueberries.


Asunto(s)
Control de Insectos/instrumentación , Gorgojos , Animales , Arándanos Azules (Planta) , Color , Estaciones del Año
7.
Insects ; 7(2)2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27092527

RESUMEN

Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae), and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae). The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day) control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1-7 days) larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries.

8.
J Econ Entomol ; 107(6): 2130-6, 2014 12.
Artículo en Inglés | MEDLINE | ID: mdl-26470078

RESUMEN

Sparganothis sulfureana Clemens is a severe pest of cranberries in the Midwest and northeast United States. Timing for insecticide applications has relied primarily on calendar dates and pheromone trap-catch; however, abiotic conditions can vary greatly, rendering such methods unreliable as indicators of optimal treatment timing. Phenology models based on degree-day (DD) accrual represent a proven, superior approach to assessing the development of insect populations, particularly for larvae. Previous studies of S. sulfureana development showed that the lower and upper temperature thresholds for larval development were 10.0 and 29.9°C (49.9 and 85.8°F), respectively. We used these thresholds to generate DD accumulations specific to S. sulfureana, and then linked these DD accumulations to discrete biological events observed during S. sulfureana development in Wisconsin and New Jersey cranberries. Here, we provide the DDs associated with flight initiation, peak flight, flight termination, adult life span, preovipositional period, ovipositional period, and egg hatch. These DD accumulations represent key developmental benchmarks, allowing for the creation of a phenology model that facilitates wiser management of S. sulfureana in the cranberry system.


Asunto(s)
Mariposas Nocturnas/crecimiento & desarrollo , Vaccinium macrocarpon , Animales , Femenino , Vuelo Animal , Masculino , Oviposición
9.
J Econ Entomol ; 97(6): 1899-905, 2004 12.
Artículo en Inglés | MEDLINE | ID: mdl-15666742

RESUMEN

The plum curculio, Conotrachelus nenuphar (Herbst), is a well known pest in apple and peach orchards, but it also is capable of having an economic impact in highbush blueberries. Host phenology and plum curculio oviposition patterns were determined on four highbush blueberry cultivars differing in fruit maturation period. Numbers of oviposition scars were higher on early- ('Weymouth') and mid-season ('Duke' and 'Bluecrop') blueberries than on late-season 'Elliott' in 2001, 2002, and 2003. In 2002, eggs were first present on the three earliest cultivars 21 d before those on 'Elliott', whereas eggs were found on 'Elliott' >40 d after the last sample with eggs for the other three cultivars. The pattern of host phenology and infestation levels suggested that plum curculio oviposition synchronizes well with the availability of suitable fruit for oviposition on early and mid-season cultivars compared with a late-season cultivar of highbush blueberries. The implications of a transition to use of reduced-risk insecticides are discussed in relation to plum curculio management.


Asunto(s)
Arándanos Azules (Planta)/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Enfermedades de las Plantas , Gorgojos/fisiología , Animales , Femenino , Oviposición , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA