Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7363, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191729

RESUMEN

Loss of peat through increased burning will have major impacts on the global carbon cycle. In a normal hydrological state, the risk of fire propagation is largely controlled by peat bulk density and moisture content. However, where humans have interfered with the moisture status of peat either via drainage, or indirectly via climate change, we hypothesise that its botanical composition will become important to flammability, such that peats from different latitudes might have different compositionally-driven susceptibility to ignition. We use pyrolysis combustion flow calorimetry to determine the temperature of maximum thermal decomposition (Tmax) of peats from different latitudes, and couple this to a botanical composition analysis. We find that tropical peat has higher Tmax than other regions, likely on account of its higher wood content which appears to convey a greater resistance to ignition. This resistance also increases with depth, which means that loss of surface peat in tropical regions may lead to a reduction in the subsequent ignitability of deeper peat layers as they are exposed, potentially resulting in a negative feedback on increased fire occurrence and severity.

2.
Proc Natl Acad Sci U S A ; 116(11): 4822-4827, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30804186

RESUMEN

Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (>40°N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.

3.
Proc Natl Acad Sci U S A ; 115(49): 12407-12412, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30455319

RESUMEN

Amazonian peatlands store a large amount of soil organic carbon (SOC), and its fate under a future changing climate is unknown. Here, we use a process-based peatland biogeochemistry model to quantify the carbon accumulation for peatland and nonpeatland ecosystems in the Pastaza-Marañon foreland basin (PMFB) in the Peruvian Amazon from 12,000 y before present to AD 2100. Model simulations indicate that warming accelerates peat SOC loss, while increasing precipitation accelerates peat SOC accumulation at millennial time scales. The uncertain parameters and spatial variation of climate are significant sources of uncertainty to modeled peat carbon accumulation. Under warmer and presumably wetter conditions over the 21st century, SOC accumulation rate in the PMFB slows down to 7.9 (4.3-12.2) g⋅C⋅m-2⋅y-1 from the current rate of 16.1 (9.1-23.7) g⋅C⋅m-2⋅y-1, and the region may turn into a carbon source to the atmosphere at -53.3 (-66.8 to -41.2) g⋅C⋅m-2⋅y-1 (negative indicates source), depending on the level of warming. Peatland ecosystems show a higher vulnerability than nonpeatland ecosystems, as indicated by the ratio of their soil carbon density changes (ranging from 3.9 to 5.8). This is primarily due to larger peatlands carbon stocks and more dramatic responses of their aerobic and anaerobic decompositions in comparison with nonpeatland ecosystems under future climate conditions. Peatland and nonpeatland soils in the PMFB may lose up to 0.4 (0.32-0.52) Pg⋅C by AD 2100 with the largest loss from palm swamp. The carbon-dense Amazonian peatland may switch from a current carbon sink into a source in the 21st century.

4.
Glob Chang Biol ; 24(2): 738-757, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29055083

RESUMEN

The most carbon (C)-dense ecosystems of Amazonia are areas characterized by the presence of peatlands. However, Amazonian peatland ecosystems are poorly understood and are threatened by human activities. Here, we present an investigation into long-term ecohydrological controls on C accumulation in an Amazonian peat dome. This site is the oldest peatland yet discovered in Amazonia (peat initiation ca. 8.9 ka BP), and developed in three stages: (i) peat initiated in an abandoned river channel with open water and aquatic plants; (ii) inundated forest swamp; and (iii) raised peat dome (since ca. 3.9 ka BP). Local burning occurred at least three times in the past 4,500 years. Two phases of particularly rapid C accumulation (ca. 6.6-6.1 and ca. 4.9-3.9 ka BP), potentially resulting from increased net primary productivity, were seemingly driven by drier conditions associated with widespread drought events. The association of drought phases with major ecosystem state shifts (open water wetland-forest swamp-peat dome) suggests a potential climatic control on the developmental trajectory of this tropical peatland. A third drought phase centred on ca. 1.8-1.1 ka BP led to markedly reduced C accumulation and potentially a hiatus during the peat dome stage. Our results suggest that future droughts may lead to phases of rapid C accumulation in some inundated tropical peat swamps, although this can lead ultimately to a shift to ombrotrophy and a subsequent return to slower C accumulation. Conversely, in ombrotrophic peat domes, droughts may lead to reduced C accumulation or even net loss of peat. Increased surface wetness at our site in recent decades may reflect a shift towards a wetter climate in western Amazonia. Amazonian peatlands represent important carbon stores and habitats, and are important archives of past climatic and ecological information. They should form key foci for conservation efforts.


Asunto(s)
Carbono/química , Suelo , Humedales , Sequías , Perú , Ríos , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA