Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Screen ; 18(5): 576-87, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23364516

RESUMEN

FadD32, a fatty acyl-AMP ligase (FAAL32) involved in the biosynthesis of mycolic acids, major and specific lipid components of the mycobacterial cell envelope, is essential for the survival of Mycobacterium tuberculosis, the causative agent of tuberculosis. The protein catalyzes the conversion of fatty acid to acyl-adenylate (acyl-AMP) in the presence of adenosine triphosphate and is conserved in all the mycobacterial species sequenced so far, thus representing a promising target for the development of novel antituberculous drugs. Here, we describe the optimization of the protein purification procedure and the development of a high-throughput screening assay for FadD32 activity. This spectrophotometric assay measuring the release of inorganic phosphate was optimized using the Mycobacterium smegmatis FadD32 as a surrogate enzyme. We describe the use of T m (melting temperature) shift assay, which measures the modulation of FadD32 thermal stability, as a tool for the identification of potential ligands and for validation of compounds as inhibitors. Screening of a selected library of compounds led to the identification of five novel classes of inhibitors.


Asunto(s)
Antituberculosos/aislamiento & purificación , Ensayos Analíticos de Alto Rendimiento/métodos , Ligasas/antagonistas & inhibidores , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/farmacología , Cromatografía en Capa Delgada/métodos , Descubrimiento de Drogas/métodos , Ligasas/genética , Ligasas/metabolismo , Modelos Biológicos , Mycobacterium smegmatis/enzimología , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Ácidos Micólicos/metabolismo , Unión Proteica , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Estudios de Validación como Asunto
2.
FEBS J ; 277(12): 2715-25, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20553505

RESUMEN

Phthiocerol and phthiodiolone dimycocerosates (DIMs) and phenolic glycolipids (PGLs) are complex lipids located at the cell surface of Mycobacterium tuberculosis that play a key role in the pathogenicity of tuberculosis. Most of the genes involved in the biosynthesis of these compounds are clustered on a region of the M. tuberculosis chromosome, the so-called DIM + PGL locus. Among these genes, four ORFs encode FadD proteins, which activate and transfer biosynthetic intermediates onto various polyketide synthases that catalyze the formation of these lipids. In this study, we investigated the roles of FadD22, FadD26 and FadD29 in the biosynthesis of DIMs and related compounds. Biochemical characterization of the lipids produced by a spontaneous Mycobacterium bovis BCG mutant harboring a large deletion within fadD26 revealed that FadD26 is required for the production of DIMs but not of PGLs. Additionally, using allelic exchange recombination, we generated an unmarked M. tuberculosis mutant containing a deletion within fadD29. Biochemical analyses of this strain revealed that, like fadD22, this gene encodes a protein that is specifically involved in the biosynthesis of PGLs, indicating that both FadD22 and FadD29 are responsible for one particular reaction in the PGL biosynthetic pathway. These findings were also supported by in vitro enzymatic studies showing that these enzymes have different properties, FadD22 displaying a p-hydroxybenzoyl-AMP ligase activity, and FadD29 a fatty acyl-AMP ligase activity. Altogether, these data allowed us to precisely define the functions fulfilled by the various FadD proteins encoded by the DIM + PGL cluster.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ligasas/metabolismo , Lípidos/biosíntesis , Mycobacterium tuberculosis/metabolismo , Ligasas de Carbono-Azufre/metabolismo
3.
Chem Biol ; 16(5): 510-9, 2009 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-19477415

RESUMEN

Mycolic acids are major and specific lipids of Mycobacterium tuberculosis cell envelope. Their synthesis requires the condensation by Pks13 of a C(22)-C(26) fatty acid with the C(50)-C(60) meromycolic acid activated by FadD32, a fatty acyl-AMP ligase essential for mycobacterial growth. A combination of biochemical and enzymatic approaches demonstrated that FadD32 exhibits substrate specificity for relatively long-chain fatty acids. More importantly, FadD32 catalyzes the transfer of the synthesized acyl-adenylate onto specific thioester acceptors, thus revealing the protein acyl-ACP ligase function. Therefore, FadD32 might be the prototype of a group of M. tuberculosis polyketide-synthase-associated adenylation enzymes possessing such activity. A substrate analog of FadD32 inhibited not only the enzyme activity but also mycolic acid synthesis and mycobacterial growth, opening an avenue for the development of novel antimycobacterial agents.


Asunto(s)
Coenzima A Ligasas/metabolismo , Mycobacterium tuberculosis/enzimología , Ácidos Micólicos/metabolismo , Secuencia de Aminoácidos , Coenzima A Ligasas/aislamiento & purificación , Datos de Secuencia Molecular , Ácidos Micólicos/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
4.
J Biol Chem ; 284(29): 19255-64, 2009 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-19436070

RESUMEN

The last steps of the biosynthesis of mycolic acids, essential and specific lipids of Mycobacterium tuberculosis and related bacteria, are catalyzed by proteins encoded by the fadD32-pks13-accD4 cluster. Here, we produced and purified an active form of the Pks13 polyketide synthase, with a phosphopantetheinyl (P-pant) arm at both positions Ser-55 and Ser-1266 of its two acyl carrier protein (ACP) domains. Combination of liquid chromatography-tandem mass spectrometry of protein tryptic digests and radiolabeling experiments showed that, in vitro, the enzyme specifically loads long-chain 2-carboxyacyl-CoA substrates onto the P-pant arm of its C-terminal ACP domain via the acyltransferase domain. The acyl-AMPs produced by the FadD32 enzyme are specifically transferred onto the ketosynthase domain after binding to the P-pant moiety of the N-terminal ACP domain of Pks13 (N-ACP(Pks13)). Unexpectedly, however, the latter step requires the presence of active FadD32. Thus, the couple FadD32-(N-ACP(Pks13)) composes the initiation module of the mycolic condensation system. Pks13 ultimately condenses the two loaded fatty acyl chains to produce alpha-alkyl beta-ketoacids, the precursors of mycolic acids. The developed in vitro assay will constitute a strategic tool for antimycobacterial drug screening.


Asunto(s)
Proteínas Bacterianas/metabolismo , Coenzima A Ligasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Ácidos Micólicos/metabolismo , Sintasas Poliquetidas/metabolismo , Proteína Transportadora de Acilo/química , Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Vías Biosintéticas , Cromatografía Liquida , Coenzima A Ligasas/genética , Electroforesis en Gel de Poliacrilamida , Estructura Molecular , Mycobacterium tuberculosis/genética , Ácidos Micólicos/química , Fragmentos de Péptidos/química , Sintasas Poliquetidas/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Masas en Tándem
5.
Ann Bot ; 102(1): 127-40, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18477560

RESUMEN

BACKGROUND AND AIMS: Although high light (HL) and high temperature (HT) stresses have been extensively investigated, a global analysis of their combined effects on the transcriptome of any plant species has not yet been described. Sunflower is an agronomically important oil crop frequently subjected to these stress factors. Because results in model plants may not always translate well to crop plants, responses of sunflower (Helianthus annuus) to HL, HT and a combination of both stresses were analysed by profiling gene expression in leaves and immature seeds. METHODS: Plants were grown in HL (600 microE m(-2) s(-1)), HT (35 degrees C) and a combination of HL and HT (HL + HT), and gene expression in leaves and immature seeds was profiled using cDNA microarrays containing more than 8000 putative unigenes. KEY RESULTS: Using two-way analysis of variance, 105, 55 and 129 cDNA clones were identified showing significant changes in steady-state transcript levels, across the two tissues, in response to HL, HT and HL + HT, respectively. A significant number of these transcripts were found to be specific to each stress. Comparing gene expression profiles between leaves and immature seeds revealed that 89, 113 and 186 cDNA clones can be considered as differentially expressed in response to HL, HT and HL + HT, respectively. More than half of the cDNA clones showing significant differences between embryo and leaf tissues in response to HL + HT were specific to this stress. Significant differences between leaves and seeds shared by all three stress treatments were observed for only eight genes. CONCLUSIONS: Taken together, these results indicate that vegetative and reproductive tissues employ different transcriptome responses to these stress treatments. Careful examination of the putative functions of these genes revealed novel and specific responses. The potential roles of many of the differentially expressed genes in stress tolerance are mentioned and discussed.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Helianthus/genética , Luz , Temperatura , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética
6.
J Exp Bot ; 57(12): 3109-22, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16899522

RESUMEN

Being able to sow early to maximize the growing season and to escape drought stress has increased the importance of low-temperature tolerance in sunflower. Yet knowledge about the molecular basis of sunflower response to low temperature is still lacking. To address this issue, nylon microarrays containing >8000 putative unigenes were developed and used. Early- and late-flowering genotypes were sown at 15 degrees C and grown until the two-leaf stage when they were subjected to 7 degrees C until the four-leaf stage. The transcriptional profiles of low temperature-grown plants (15 degrees C and 7 degrees C) were compared with those grown under standard conditions (25 degrees C). Two-step ANOVA normalization and analysis models were used to identify the differentially expressed genes. A total of 108 cDNA clones having a P-value <10(-3) were found to be differentially expressed between the low temperature-grown plants (15 degrees C and 7 degrees C) and their corresponding two-leaf- and four-leaf-stage controls across the two genotypes. About 90% of these genes were down-regulated. This includes genes potentially involved in the metabolism of carbohydrate and energy, protein synthesis, signal transduction, and transport function. Comparing gene expression profiles at 15 degrees C and 7 degrees C revealed that only four genes can be considered as differentially expressed, in both genotypes, suggesting that similar genetic programmes underlie the response of sunflower plants to these temperature regimes. The analysis also revealed that early- and late-flowering genotypes respond similarly to low-temperature tolerance as justified by the low number of genes showing a significant genotype x treatment interaction effect. It seems likely that the down-regulation and/or non-induction of genes having a critical role in low-temperature tolerance may be responsible for the sensitivity of sunflower plants to low-temperature tolerance. The results reported provide an initial characterization of the transcriptome activity of sunflower, as a chilling-sensitive plant under suboptimal temperatures, and could be of importance to reveal the potential differences between chilling-sensitive and chilling-tolerant species.


Asunto(s)
Frío , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Helianthus/genética , Aclimatación/genética , Cruzamiento , Perfilación de la Expresión Génica , Genes de Plantas , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...