Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 131(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34491914

RESUMEN

Spreading depolarizations (SDs) are involved in migraine, epilepsy, stroke, traumatic brain injury, and subarachnoid hemorrhage. However, the cellular origin and specific differential mechanisms are not clear. Increased glutamatergic activity is thought to be the key factor for generating cortical spreading depression (CSD), a pathological mechanism of migraine. Here, we show that acute pharmacological activation of NaV1.1 (the main Na+ channel of interneurons) or optogenetic-induced hyperactivity of GABAergic interneurons is sufficient to ignite CSD in the neocortex by spiking-generated extracellular K+ build-up. Neither GABAergic nor glutamatergic synaptic transmission were required for CSD initiation. CSD was not generated in other brain areas, suggesting that this is a neocortex-specific mechanism of CSD initiation. Gain-of-function mutations of NaV1.1 (SCN1A) cause familial hemiplegic migraine type-3 (FHM3), a subtype of migraine with aura, of which CSD is the neurophysiological correlate. Our results provide the mechanism linking NaV1.1 gain of function to CSD generation in FHM3. Thus, we reveal the key role of hyperactivity of GABAergic interneurons in a mechanism of CSD initiation, which is relevant as a pathological mechanism of Nav1.1 FHM3 mutations, and possibly also for other types of migraine and diseases in which SDs are involved.


Asunto(s)
Depresión de Propagación Cortical , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Trastornos Migrañosos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Neocórtex/metabolismo , Animales , Neuronas GABAérgicas/patología , Interneuronas/patología , Ratones , Ratones Transgénicos , Trastornos Migrañosos/genética , Trastornos Migrañosos/patología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Neocórtex/patología
2.
Sci Rep ; 9(1): 12886, 2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31501495

RESUMEN

Mutations of the SCN2A gene, encoding the voltage gated sodium channel NaV1.2, have been associated to a wide spectrum of epileptic disorders ranging from benign familial neonatal-infantile seizures to early onset epileptic encephalopathies such as Ohtahara syndrome. These phenotypes may be caused by either gain-of-function or loss-of-function mutations. More recently, loss-of-function SCN2A mutations have also been identified in patients with autism spectrum disorder (ASD) without overt epileptic phenotypes. Heterozygous Scn2a knock-out mice (Scn2a+/-) may be a model of this phenotype. Because ASD develops in childhood, we performed a detailed behavioral characterization of Scn2a+/- mice comparing the juvenile/adolescent period of development and adulthood. We used tasks relevant to ASD and the different comorbidities frequently found in this disorder, such as anxiety or intellectual disability. Our data demonstrate that young Scn2a+/- mice display autistic-like phenotype associated to impaired memory and reduced reactivity to stressful stimuli. Interestingly, these dysfunctions are attenuated with age since adult mice show only communicative deficits. Considering the clinical data available on patients with loss-of-function SCN2A mutations, our results indicate that Scn2a+/- mice constitute an ASD model with construct and face validity during the juvenile/adolescent period of development. However, more information about the clinical features of adult carriers of SCN2A mutations is needed to evaluate comparatively the phenotype of adult Scn2a+/- mice.


Asunto(s)
Envejecimiento/genética , Trastorno del Espectro Autista/genética , Técnicas de Inactivación de Genes , Haploinsuficiencia , Canal de Sodio Activado por Voltaje NAV1.2/deficiencia , Canal de Sodio Activado por Voltaje NAV1.2/genética , Fenotipo , Animales , Trastorno del Espectro Autista/fisiopatología , Memoria , Ratones , Aprendizaje Espacial
3.
J Vis Exp ; (97)2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25867523

RESUMEN

Endosomal acidification is critical for a wide range of processes, such as protein recycling and degradation, receptor desensitization, and neurotransmitter loading in synaptic vesicles. This acidification is described to be mediated by proton ATPases, coupled to ClC chloride transporters. Highly-conserved electroneutral protons transporters, the Na+/H+ exchangers (NHE) 6, 7 and 9 are also expressed in these compartments. Mutations in their genes have been linked with human cognitive and neurodegenerative diseases. Paradoxically, their roles remain elusive, as their intracellular localization has prevented detailed functional characterization. This manuscript shows a method to solve this problem. This consists of the selection of mutant cell lines, capable of surviving acute cytosolic acidification by retaining intracellular NHEs at the plasma membrane. It then depicts two complementary protocols to measure the ion selectivity and activity of these exchangers: (i) one based on intracellular pH measurements using fluorescence video microscopy, and (ii) one based on the fast kinetics of lithium uptake. Such protocols can be extrapolated to measure other non-electrogenic transporters. Furthermore, the selection procedure presented here generates cells with an intracellular retention defective phenotype. Therefore these cells will also express other vesicular membrane proteins at the plasma membrane. The experimental strategy depicted here may therefore constitute a potentially powerful tool to study other intracellular proteins that will be then expressed at the plasma membrane together with the vesicular Na+/H+ exchangers used for the selection.


Asunto(s)
Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Endosomas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico , Protones , Intercambiadores de Sodio-Hidrógeno/química
4.
Cell Rep ; 7(3): 689-96, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24767989

RESUMEN

Vesicular H(+)-ATPases and ClC-chloride transporters are described to acidify intracellular compartments, which also express the highly conserved Na(+)/H(+) exchangers NHE6, NHE7, and NHE9. Mutations of these exchangers cause autism-spectrum disorders and neurodegeneration. NHE6, NHE7, and NHE9 are hypothesized to exchange cytosolic K(+) for H(+) and alkalinize vesicles, but this notion has remained untested in K(+) because their intracellular localization prevents functional measurements. Using proton-killing techniques, we selected a cell line that expresses wild-type NHE7 at the plasma membrane, enabling measurement of the exchanger's transport parameters. We found that NHE7 transports Li(+) and Na(+), but not K(+), is nonreversible in physiological conditions and is constitutively activated by cytosolic H(+). Therefore, NHE7 acts as a proton-loading transporter rather than a proton leak. NHE7 mediates an acidification of intracellular vesicles that is additive to that of V-ATPases and that accelerates endocytosis. This study reveals an unexpected function for vesicular Na(+)/H(+) exchangers and provides clues for understanding NHE-linked neurological disorders.


Asunto(s)
Endocitosis/fisiología , Potasio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular , Membrana Celular/metabolismo , Citoplasma/metabolismo , Endosomas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Transporte Iónico , Iones/química , Litio/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/patología , Protones , ARN Interferente Pequeño/metabolismo , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Intercambiadores de Sodio-Hidrógeno/genética
5.
Physiol Behav ; 104(5): 1075-81, 2011 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-21683728

RESUMEN

Fear-conditioned analgesia (FCA) is the reduction in pain responding which is expressed upon re-exposure to a context previously paired with an aversive stimulus. Projections along the prefrontal cortex (PFC)-amygdala-dorsal periaqueductal grey (dPAG) pathway may mediate FCA. However, there is a paucity of studies measuring both molecular and electrophysiological changes in this pathway in rats expressing persistent pain-related behaviour or FCA. Male Lister-hooded rats, with stimulating and recording electrodes implanted in the amygdala and dPAG, respectively, either received or did not receive footshock (0.4 mA) paired with context, followed 23.5 h later by an intraplantar injection of saline or formalin (50 µL, 2.5%) into the right hindpaw. Thirty minutes post-formalin/saline, rats were re-exposed to the context for 15 min, during which pain-related behaviours were assessed in addition to evoked field potential recordings in the amygdala-dPAG pathway. Immediately after the 15-minute trial, PFC tissue was isolated for measurement of total and phosphorylated extracellular-signal regulated kinase (ERK) by western blotting. Formalin-evoked nociceptive behaviour in non-fear-conditioned rats was associated with increased field potential amplitude in the dPAG and increased relative expression of phospho-ERK in the PFC. These effects were abolished in rats expressing FCA. Fear conditioning in non-formalin treated rats was associated with increased phospho-ERK in the PFC but no change in field potential amplitude in the dPAG. Together, these data suggest differential, state-dependent alterations in electrophysiological activity and ERK phosphorylation along the PFC-amygdala-dPAG pathway during pain, conditioned fear, and FCA.


Asunto(s)
Amígdala del Cerebelo/fisiología , Condicionamiento Psicológico/fisiología , Miedo , Manejo del Dolor , Dolor/patología , Sustancia Gris Periacueductal/fisiología , Corteza Prefrontal/fisiología , Animales , Biofisica , Modelos Animales de Enfermedad , Estimulación Eléctrica/métodos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Formaldehído/efectos adversos , Regulación de la Expresión Génica , Masculino , Vías Nerviosas/fisiología , Dolor/fisiopatología , Dimensión del Dolor , Umbral del Dolor , Ratas
6.
J Physiol ; 589(Pt 13): 3115-24, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21521764

RESUMEN

Myotonia is an intrinsic muscular disorder caused by muscle fibre hyperexcitability, which produces a prolonged time for relaxation after voluntary muscle contraction or internal mechanical stimulation. Missense mutations in skeletal muscle genes encoding Cl− or Na+ channels cause non-dystrophic myotonias.Mutations of the SCN4A gene that encodes the skeletal voltage-gated Na+ channel Nav1.4 can produce opposing phenotypes leading to hyperexcitable or inexcitable muscle fibres. Nav1.4 mutations result in different forms of myotonias that can be found in adults. However, the recently reported myotonic manifestations in infants have been shown to be lethal. This was typically the case for children suffering from severe neonatal episodic laryngospasm (SNEL). A novel Nav1.4 channel missense mutation was found in these children that has not yet been analysed. In this study, we characterize the functional consequences of the new A799S Na+ channel mutation that is associated with sodium channel myotonia in newborn babies. We have used mammalian cell expression and patch-clamp techniques to monitor the channel properties.We found that the A799S substitution changes several biophysical properties of the channel by causing a hyperpolarizing shift of the steady-state activation, and slowing the kinetics of fast inactivation and deactivation. In addition, the single channel open probability was dramatically increased, contributing hence to a severe phenotype. We showed that substitutions at position 799 of the Nav1.4 channel favoured the channel open state with sustained activity leading to hyperexcitability of laryngeal muscles that could be lethal during infancy.


Asunto(s)
Músculo Esquelético/fisiología , Mutación Missense/genética , Canales de Sodio/genética , Sustitución de Aminoácidos/genética , Animales , Línea Celular , Humanos , Laringismo/genética , Músculo Esquelético/patología , Miotonía/genética , Canal de Sodio Activado por Voltaje NAV1.4 , Índice de Severidad de la Enfermedad , Canales de Sodio/efectos adversos
8.
Psychopharmacology (Berl) ; 192(3): 373-83, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17279373

RESUMEN

RATIONALE: Prenatal methylazoxymethanol (MAM) administration at gestational day 17 has been shown to induce in adult rats schizophrenia-like behaviours as well as morphological and/or functional abnormalities in structures such as the hippocampus, medial prefrontal cortex (mPFC) and nucleus accumbens (NAcc), consistent with human data. OBJECTIVES: The aim of the present study was to further characterize the neurochemical alterations associated with this neurodevelopmental animal model of schizophrenia. MATERIALS AND METHODS: We performed simultaneous measurements of locomotor activity and extracellular concentrations of glutamate, dopamine and noradrenaline in the mPFC and the NAcc of adult rats prenatally exposed to MAM or saline after acute systemic injection of a noncompetitive NMDA antagonist, MK-801 (0.1 mg/kg s.c.). RESULTS: A significant attenuation of the MK-801-induced increase in glutamate levels associated with a potentiation of the increase in noradrenaline concentrations was found in the mPFC of MAM-exposed rats, whereas no significant change was observed in the NAcc. MAM-exposed rats also exhibited an exaggerated locomotor hyperactivity, in line with the exacerbation of symptoms reported in schizophrenic patients after administration of noncompetitive NMDA antagonists. CONCLUSIONS: Given the importance of the mPFC in regulating the hyperlocomotor effect of NMDA antagonists, our results suggest that the prefrontal neurochemical alterations induced by MK-801 may sustain the exaggerated locomotor response in MAM-exposed rats.


Asunto(s)
Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Corteza Prefrontal/efectos de los fármacos , Esquizofrenia/fisiopatología , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Dopamina/metabolismo , Femenino , Ácido Glutámico/efectos de los fármacos , Ácido Glutámico/metabolismo , Masculino , Acetato de Metilazoximetanol/análogos & derivados , Acetato de Metilazoximetanol/farmacología , Microdiálisis , Actividad Motora/efectos de los fármacos , Norepinefrina/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores
9.
Neuropsychopharmacology ; 32(3): 719-27, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16525415

RESUMEN

Noncompetitive N-methyl-D-aspartate (NMDA) antagonists such as ketamine represent useful pharmacological tools to model, in both healthy humans and rodents, behavioral and cerebral abnormalities of schizophrenia. These compounds are thought to exert some of their disruptive effects by impairing glutamatergic transmission in corticolimbic circuits including the nucleus accumbens (NAc). In this study, we investigated in freely moving rats behavioral changes as well as electrophysiological and neurochemical alterations in the NAc following acute systemic injection of a subanesthetic dose (25 mg/kg) of ketamine. We found that ketamine induced an immediate behavioral activation, characterized by hyperlocomotion, stereotypies and ataxia, and abolished latent inhibition in a conditioned-fear paradigm when injected at the pre-exposure stage. We also observed that during expression of motor effects which are thought to be related to the positive symptoms of schizophrenia, ketamine potentiated synaptic efficacy in the prefrontal-accumbens pathway and increased the extracellular levels of glutamate in the NAc. These results, taken together with previous findings, suggest that the psychotic-like effects of noncompetitive NMDA antagonists may be, in part, mediated by an increase in glutamate release in the NAc associated with synaptic changes in accumbens glutamatergic inputs including enhancement of synaptic efficacy in the prefrontal input.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/metabolismo , Ketamina/farmacología , Núcleo Accumbens/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Potenciales Evocados/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Inhibición Psicológica , Masculino , Actividad Motora/efectos de los fármacos , Núcleo Accumbens/metabolismo , Corteza Prefrontal/fisiología , Ratas , Ratas Wistar , Conducta Estereotipada/efectos de los fármacos
10.
Synapse ; 60(4): 280-7, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16786530

RESUMEN

A previous study has demonstrated that disruption of fear extinction-induced long-term potentiation (LTP) in the medial prefrontal cortex (mPFC) is associated with the return of fear responding. Given that immediate posttraining infusion of PD098059, an inhibitor of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) cascade, into the mPFC also promotes recovery of fear, we investigated whether impairment of mPFC ERK/MAPK cascade also interferes with development of extinction-related LTP in the mPFC in rats. In Experiment 1, extinction training consisting of repetitive presentations of a tone previously associated with eyelid-shock application induced LTP-like changes at hippocampal inputs to the mPFC that were evident for approximately 2 h following fear extinction. Infusion of PD098059 into the mPFC immediately after extinction training abolished training-related prefrontal LTP and impaired retention of extinction memory tested on the following day. In Experiment 2, immunoblotting assays revealed that posttraining infusion of PD098059 into the mPFC produced a significant reduction of mPFC ERK2. These data, along with previous findings, suggest that low levels of ERK2 phosphorylation in the mPFC may interfere with mechanisms of retention of extinction training. The involvement of mPFC LTP in fear extinction is discussed.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Extinción Psicológica/efectos de los fármacos , Flavonoides/farmacología , MAP Quinasa Quinasa 2/antagonistas & inhibidores , MAP Quinasa Quinasa 2/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Corteza Prefrontal/fisiología , Sinapsis/efectos de los fármacos , Animales , Electrodos Implantados , Inhibidores Enzimáticos/administración & dosificación , Flavonoides/administración & dosificación , Inyecciones , Masculino , Memoria/efectos de los fármacos , Fosforilación , Ratas , Ratas Wistar
11.
Cell ; 122(4): 619-31, 2005 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-16122428

RESUMEN

Opioid and tachykinin systems are involved in modulation of pain transmission in the spinal cord. Regulation of surface opioid receptors on nociceptive afferents is critical for opioid analgesia. Plasma-membrane insertion of delta-opioid receptors (DORs) is induced by stimulus-triggered exocytosis of DOR-containing large dense-core vesicles (LDCVs), but how DORs become sorted into the regulated secretory pathway is unknown. Here we report that direct interaction between protachykinin and DOR is responsible for sorting of DORs into LDCVs, allowing stimulus-induced surface insertion of DORs and DOR-mediated spinal analgesia. This interaction is mediated by the substance P domain of protachykinin and the third luminal domain of DOR. Furthermore, deletion of the preprotachykinin A gene reduced stimulus-induced surface insertion of DORs and abolished DOR-mediated spinal analgesia and morphine tolerance. Thus, protachykinin is essential for modulation of the sensitivity of nociceptive afferents to opioids, and the opioid and tachykinin systems are directly linked by protachykinin/DOR interaction.


Asunto(s)
Analgésicos Opioides/farmacología , Neuronas Aferentes/metabolismo , Nociceptores/metabolismo , Precursores de Proteínas/metabolismo , Receptores Opioides delta/metabolismo , Vesículas Secretoras/metabolismo , Taquicininas/metabolismo , Vías Aferentes/efectos de los fármacos , Vías Aferentes/metabolismo , Vías Aferentes/ultraestructura , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Cultivadas , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ganglios Espinales/ultraestructura , Eliminación de Gen , Masculino , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/ultraestructura , Nociceptores/efectos de los fármacos , Nociceptores/ultraestructura , Células PC12 , Dolor/tratamiento farmacológico , Dolor/metabolismo , Dolor/fisiopatología , Precursores de Proteínas/química , Precursores de Proteínas/genética , Estructura Terciaria de Proteína/fisiología , Ratas , Agregación de Receptores/fisiología , Receptores de Superficie Celular/metabolismo , Vesículas Secretoras/ultraestructura , Sustancia P/química , Sustancia P/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Taquicininas/química , Taquicininas/genética
12.
Neurosci Lett ; 356(3): 220-4, 2004 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-15036634

RESUMEN

Given the existence of functional interactions between opioidergic and dopaminergic systems, we have analyzed by quantitative autoradiography the possible long-term adaptive changes in the expression of D(1)- and D(2)-like dopamine receptors in the brains of mice lacking the micro-opioid receptor gene. An overall significant increase in D(1) and D(2) receptors (7.4 and 12.6%, respectively) across all cerebral regions examined was obtained in mutant mice relative to wild-type mice. However, region by region comparisons failed to reach significance in any individual brain area. These results indicate that only moderate changes in D(1)- and D(2)-like dopamine receptors densities occur in the brains of micro-opioid receptor knockout mice.


Asunto(s)
Encéfalo/metabolismo , Receptores Dopaminérgicos/análisis , Receptores Opioides mu/deficiencia , Análisis de Varianza , Animales , Autorradiografía/métodos , Benzazepinas/farmacocinética , Encéfalo/anatomía & histología , Antagonistas de Dopamina/farmacocinética , Ratones , Ratones Noqueados , Racloprida/farmacocinética , Receptores Dopaminérgicos/clasificación , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Tritio/farmacocinética
13.
Behav Neurosci ; 116(1): 95-104, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11895187

RESUMEN

Latent inhibition (LI) refers to the decrease in conditioned response produced by the repeated nonrein-forced preexposure to the to-be-conditioned stimulus. Experiment I investigated the effects of electrolytic lesions of the entorhinal cortex on LI in a conditioned emotional response procedure. Entorhinal cortex lesions attenuated LI. Experiments 2 and 3 investigated whether this attenuation of LI could result from a modification in nucleus accumbens (NAcc) dopamine (DA) release. Rats with entorhinal cortex lesions displayed normal spontaneous and amphetamine-induced locomotor activity, as well as normal basal and amphetamine-induced release of DA within the NAcc (assessed by microdialysis). Taken together, these results show that entorhinal cortex lesions disrupt LI in a way that is unlikely to be due to an alteration of DA release within the NAcc.


Asunto(s)
Condicionamiento Clásico/fisiología , Dopamina/fisiología , Corteza Entorrinal/fisiología , Recuerdo Mental/fisiología , Inhibición Neural/fisiología , Núcleo Accumbens/fisiología , Animales , Nivel de Alerta/fisiología , Miedo/fisiología , Masculino , Actividad Motora/fisiología , Vías Nerviosas/fisiología , Ratas , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...