Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 131(7): 1107-1119, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36976581

RESUMEN

BACKGROUND AND AIMS: Arbuscular mycorrhizal (AM) fungi enhance the uptake of water and minerals by the plant hosts, alleviating plant stress. Therefore, AM fungal-plant interactions are particularly important in drylands and other stressful ecosystems. We aimed to determine the combined and independent effects of above- and below-ground plant community attributes (i.e. diversity and composition), soil heterogeneity and spatial covariates on the spatial structure of the AM fungal communities in a semiarid Mediterranean scrubland. Furthermore, we evaluated how the phylogenetic relatedness of both plants and AM fungi shapes these symbiotic relationships. METHODS: We characterized the composition and diversity of AM fungal and plant communities in a dry Mediterranean scrubland taxonomically and phylogenetically, using DNA metabarcoding and a spatially explicit sampling design at the plant neighbourhood scale. KEY RESULTS: The above- and below-ground plant community attributes, soil physicochemical properties and spatial variables explained unique fractions of AM fungal diversity and composition. Mainly, variations in plant composition affected the AM fungal composition and diversity. Our results also showed that particular AM fungal taxa tended to be associated with closely related plant species, suggesting the existence of a phylogenetic signal. Although soil texture, fertility and pH affected AM fungal community assembly, spatial factors had a greater influence on AM fungal community composition and diversity than soil physicochemical properties. CONCLUSIONS: Our results highlight that the more easily accessible above-ground vegetation is a reliable indicator of the linkages between plant roots and AM fungi. We also emphasize the importance of soil physicochemical properties in addition to below-ground plant information, while accounting for the phylogenetic relationships of both plants and fungi, because these factors improve our ability to predict the relationships between AM fungal and plant communities.


Asunto(s)
Micorrizas , Micorrizas/genética , Ecosistema , Filogenia , Suelo/química , Simbiosis , Raíces de Plantas , Plantas/microbiología , Microbiología del Suelo , Hongos
2.
Plant Environ Interact ; 3(1): 16-27, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37283692

RESUMEN

Salt marshes are unique habitats between sea or saline lakes and land that need to be conserved from the effects of global change. Understanding the variation in functional structure of plant community along environmental gradients is critical to predict the response of plant communities to ongoing environmental changes. We evaluated the changes in the functional structure of halophytic communities along soil gradients including salinity, in Iranian salt marshes; Lake Urmia, Lake Meyghan, Musa estuary, and Nayband Bay (Iran). We established 48 plots from 16 sites in four salt marshes and sampled 10 leaves per species to measure leaf functional traits. Five soil samples were sampled from each plot and 30 variables were analyzed. We examined the changes in the functional structure of plant communities (i.e., functional diversity [FD] and community weighted mean [CWM]) along local soil gradients using linear mixed effect models. Our results showed that FD and CWM of leaf thickness tended to increase with salinity, while those indices related to leaf shape decreased following soil potassium content. Our results suggest that the variations in functional structure of plant communities along local soil gradients reveal the effect of different ecological processes (e.g., niche differentiation related to the habitat heterogeneity) that drive the assembly of halophytic plant communities in SW Asian salt marshes.

3.
Microorganisms ; 8(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271812

RESUMEN

Assessing the ecological impacts of environmental change on biological communities requires knowledge of the factors driving the spatial patterns of the three diversity facets along extensive environmental gradients. We quantified the taxonomic (TD), functional (FD), and phylogenetic diversity (PD) of lichen epiphytic communities in 23 beech forests along Europe to examine their response to environmental variation (climate, habitat quality, spatial predictors) at a continental geographic scale. We selected six traits related to the climatic conditions in forest ecosystems, the water-use strategy and the nutrient uptake, and we built a phylogenetic tree based on four molecular markers. FD and climate determined TD and PD, with spatial variables also affecting PD. The three diversity facets were primarily shaped by distinct critical predictors, with the temperature diurnal range affecting FD and PD, and precipitation of the wettest month determining TD. Our results emphasize the value of FD for explaining part of TD and PD variation in lichen communities at a broad geographic scale, while highlighting that these diversity facets provide complementary information about the communities' response under changing environmental conditions. Furthermore, traits such as growth form, photobiont type, and reproductive strategy mediated the response of lichen communities to abiotic factors emerging as useful indicators of macroclimatic variations.

4.
New Phytol ; 228(3): 1070-1082, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32557640

RESUMEN

Roots are assumed to play a major role in structuring soil microbial communities, but most studies exploring the relationships between microbes and plants at the community level have only used aboveground plant distribution as a proxy. However, a decoupling between belowground and aboveground plant components may occur due to differential spreading of plant canopies and root systems. Thus, soil microbe-plant links are not completely understood. Using a combination of DNA metabarcoding and spatially explicit sampling at the plant neighbourhood scale, we assessed the influence of the plant root community on soil bacterial and fungal diversity (species richness, composition and ß-diversity) in a dry Mediterranean scrubland. We found that root composition and biomass, but not richness, predict unique fractions of variation in microbial richness and composition. Moreover, bacterial ß-diversity was related to root ß-diversity, while fungal ß-diversity was related to aboveground plant ß-diversity, suggesting that plants differently influence both microbial groups. Our study highlights the role of plant distribution both belowground and aboveground, soil properties and other spatially structured factors in explaining the heterogeneity in soil microbial diversity. These results also show that incorporating data on both plant community compartments will further our understanding of the relationships between soil microbial and plant communities.


Asunto(s)
Biodiversidad , Suelo , Bacterias/genética , Hongos , Raíces de Plantas , Microbiología del Suelo
5.
Sci Total Environ ; 698: 133960, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31493573

RESUMEN

Disentangling the processes that drive plant community assembly is critical for understanding the patterns of plant diversity. We studied how different abiotic and biotic factors shape the interplay between the facets of alpine plant diversity, functional (FD), phylogenetic (PD) and taxonomic diversity (TD), in three different mountain ranges with contrasting evolutionary histories and climate conditions (Pyrenees and Mediterranean-type mountains in central Spain and Chilean Andes). We hypothesized that the causal links vary in strength and sign across regions. We used species inventories, functional trait data, and a phylogeny from 84 plant communities spread throughout three high-mountain alpine grasslands. Structural equation models were used to test our causal hypotheses on the relationships observed between the three diversity facets, and the abiotic (elevation, potential solar radiation and soil total nitrogen) and biotic factors (C-score). Despite our causal model presented a high variability in each mountain range, TD always decreased with increasing elevation (sum of direct and indirect effects). We also found some patterns suggesting that assembly processes could be climatically/biogeographically structured such as the negative relationship between FD and elevation found in Mediterranean mountains and the negative relationship between FD and TD found in both Spanish mountain ranges (independently of their different climates). A remarkable finding of this study is that ecological factors such as soil total nitrogen and elevation indirectly alter the relationships between the diversity facets. Our results suggest that diversity facets are simultaneously affected by different ecological and biogeographical/evolutionary processes, resulting in some general trends but also in parallel idiosyncratic patterns. Our findings highlight that although FD stand out by its explanatory power of community processes, TD and PD provide a complementary and necessary view that should not be disregarded in the attempt to globally explain community assembly processes.


Asunto(s)
Biodiversidad , Clima , Filogenia , Altitud , Chile , Cambio Climático , Ecología , Monitoreo del Ambiente , Plantas , Suelo , España
6.
Data Brief ; 27: 104816, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31788524

RESUMEN

Vegetation above treeline constitutes one of the most vulnerable ecosystems to climate warming and other drivers of Global Change. Given the panorama of such an uncertain future facing these plant communities, it is critical to know how they respond to environmental changes and improve the knowledge on the potential impacts of climate change on their distribution. Recently, with the impressive development of trait-based approaches, relevant progress has been made to better understand the relationships between environmental conditions and plant communities. In this data paper, we describe data on abundances of 327 alpine plant species across 430 subplots of 2.4 m × 2.4 m in three mountain ranges (Sierra de Guadarrama and Pyrenees in Spain, and the Central Andes in Chile). We provide data on different environmental variables that represent variation in abiotic conditions and operate at different spatial scales (e.g., climatic, topographic and soil conditions). Data on six plant functional traits are also shown, which were measured on ten individuals of each species, following standard protocols. We provided the dataset as tables in the supplementary material. This information could be used to analyse the relationship between the alpine vegetation and changes in environmental conditions, and ultimately, to understand ecosystem functioning and guide conservation strategies of theses threatened and valuable ecosystems.

7.
Mol Ecol Resour ; 19(5): 1265-1277, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31232514

RESUMEN

Most work on plant community ecology has been performed above ground, neglecting the processes that occur in the soil. DNA metabarcoding, in which multiple species are computationally identified in bulk samples, can help to overcome the logistical limitations involved in sampling plant communities belowground. However, a major limitation of this methodology is the quantification of species' abundances based on the percentage of sequences assigned to each taxon. Using root tissues of five dominant species in a semi-arid Mediterranean shrubland (Bupleurum fruticescens, Helianthemum cinereum, Linum suffruticosum, Stipa pennata and Thymus vulgaris), we built pairwise mixtures of relative abundance (20%, 50% and 80% biomass), and implemented two methods (linear model fits and correction indices) to improve estimates of root biomass. We validated both methods with multispecies mixtures that simulate field-collected samples. For all species, we found a positive and highly significant relationship between the percentage of sequences and biomass in the mixtures (R2  = .44-.66), but the equations for each species (slope and intercept) differed among them, and two species were consistently over- and under-estimated. The correction indices greatly improved the estimates of biomass percentage for all five species in the multispecies mixtures, and reduced the overall error from 17% to 6%. Our results show that, through the use of post-sequencing quantification methods on mock communities, DNA metabarcoding can be effectively used to determine not only species' presence but also their relative abundance in field samples of root mixtures. Importantly, knowledge of these aspects will allow us to study key, yet poorly understood, belowground processes.


Asunto(s)
Biota , Código de Barras del ADN Taxonómico/métodos , Metagenómica/métodos , Plantas/clasificación , Plantas/genética , ADN de Plantas/genética , Raíces de Plantas/clasificación , Raíces de Plantas/genética
8.
PLoS One ; 13(7): e0200216, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29979767

RESUMEN

Mountains are considered excellent natural laboratories for studying the determinants of plant diversity at contrasting spatial scales. To gain insights into how plant diversity is structured at different spatial scales, we surveyed high mountain plant communities in the Chilean Andes where man-driven perturbations are rare. This was done along elevational gradients located at different latitudes taking into account factors that act at fine scales, including abiotic (potential solar radiation and soil quality) and biotic (species interactions) factors, and considering multiple spatial scales. Species richness, inverse of Simpson's concentration (Dequiv), beta-diversity and plant cover were estimated using the percentage of cover per species recorded in 34 sites in the different regions with contrasted climates. Overall, plant species richness, Dequiv and plant cover were lower in sites located at higher latitudes. We found a unimodal relationship between species richness and elevation and this pattern was constant independently of the regional climatic conditions. Soil quality decreased the beta-diversity among the plots in each massif and increased the richness, the Dequiv and cover. Segregated patterns of species co-occurrence were related to increases in richness, Dequiv and plant cover at finer scales. Our results showed that elevation patterns of alpine plant diversity remained constant along the regions although the mechanisms underlying these diversity patterns may differ among climatic regions. They also suggested that the patterns of plant diversity in alpine ecosystems respond to a series of factors (abiotic and biotic) that act jointly at different spatial scale determining the assemblages of local communities, but their importance can only be assessed using a multi-scale spatial approach.


Asunto(s)
Altitud , Biodiversidad , Plantas , Chile , Clima , Ecosistema , Suelo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...