Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 297: 154259, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705079

RESUMEN

Management of the plant microbiome may help support food needs for the human population. Bacteria influence plants through enhancing nutrient uptake, metabolism, photosynthesis, biomass production and/or reinforcing immunity. However, information into how these microbes behave under different growth conditions is missing. In this work, we tested how carbon supplements modulate the interaction of Pseudomonas chlororaphis with Arabidopsis thaliana. P. chlororaphis streaks strongly repressed primary root growth, lateral root formation and ultimately, biomass production. Noteworthy, increasing sucrose availability into the media from 0 to 2.4% restored plant growth and promoted lateral root formation in bacterized seedlings. This effect could not be observed by supplementing sucrose to leaves only, indicating that the interaction was strongly modulated by bacterial access to sugar. Total phenazine content decreased in the bacteria grown in high (2.4%) sucrose medium, and conversely, the expression of phzH and pslA genes were diminished by sugar supply. Pyocyanin antagonized the promoting effects of sucrose in lateral root formation and biomass production in inoculated seedlings, indicating that this virulence factor accounts for growth repression during the plant-bacterial interaction. Defence reporter transgenes PR-1::GUS and LOX2::GUS were induced in leaves, while the expression of the auxin-inducible, synthetic reporter gene DR5::GUS was enhanced in the roots of bacterized seedlings at low and high sucrose treatments, which suggests that growth/defence trade-offs in plants are critically modulated by P. chlororaphis. Collectively, our data suggest that bacterial carbon nutrition controls the outcome of the relation with plants.


Asunto(s)
Arabidopsis , Ácidos Indolacéticos , Fenazinas , Raíces de Plantas , Pseudomonas chlororaphis , Sacarosa , Sacarosa/metabolismo , Arabidopsis/microbiología , Arabidopsis/metabolismo , Arabidopsis/genética , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Pseudomonas chlororaphis/metabolismo , Fenazinas/metabolismo , Ácidos Indolacéticos/metabolismo
2.
Microbiol Res ; 281: 127594, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38211416

RESUMEN

Soil alkalinity is a critical environmental factor for plant growth and distribution in ecosystems. An alkaline condition (pH > 7) is imposed by the rising concentration of hydroxides and cations, and prevails in semiarid and arid environments, which represent more than 25% of the total arable land of the world. Despite the great pressure exerted by alkalinity for root viability and plant survival, scarce information is available to understand how root microbes contribute to alkaline pH adaptation. Here, we assessed the effects of alkalinity on shoot and root biomass production, chlorophyll content, root growth and branching, lateral root primordia formation, and the expression of CYCB1, TOR kinase, and auxin and cytokinin-inducible trangenes in shoots and roots of Arabidopsis seedlings grown in Petri plates with agar-nutrient medium at pH values of 7.0, 7.5, 8.0, 8.5, and 9.0. The results showed an inverse correlation between the rise of pH and most growth, hormonal and genetic traits analyzed. Noteworthy, root inoculation with Achromobacter sp. 5B1, a beneficial rhizospheric bacterium, with plant growth promoting and salt tolerance features, increased biomass production, restored root growth and branching and enhanced auxin responses in WT seedlings and auxin-related mutants aux1-7 and eir1, indicating that stress adaptation operates independently of canonical auxin transporter proteins. Sequencing of the Achromobacter sp. 5B1 genome unveiled 5244 protein-coding genes, including genes possibly involved in auxin biosynthesis, quorum-sensing regulation and stress adaptation, which may account for its plant growth promotion attributes. These data highlight the critical role of rhizobacteria to increase plant resilience under high soil pH conditions potentially through genes for adaptation to an extreme environment and bacteria-plant communication.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Plantones , Proteínas de Arabidopsis/genética , Ecosistema , Raíces de Plantas , Ácidos Indolacéticos/metabolismo , Suelo , Regulación de la Expresión Génica de las Plantas
3.
Microb Ecol ; 86(1): 727-741, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35948833

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogenic bacterium for humans, animals, and plants, through producing different molecular factors such as biofilm, siderophores, and other virulence factors which favor bacterial establishment and infection in the host. In P. aeruginosa PAO1, the production of these factors is regulated by the bacterial quorum sensing (QS) mechanisms. From them, siderophores are involved in iron acquisition, transport, and homeostasis. They are also considered some of the main virulence factors in P. aeruginosa; however, detailed mechanisms to induce bacterial pathogenesis are poorly understood. In this work, through reverse genetics, we evaluated the function of bacterial pathogenesis in the pvd cluster genes, which are required for synthesizing the siderophore pyoverdine (PVD). Single pvdI, pvdJ, pvdL, and double mutant strains were analyzed, and contrary to expected, the pvdL and pvdI mutations increased the concentration of PVD and other phenazines, such as pyocyanin (PYO) and phenazine-1-carboxylic acid (PCA) and also an increased biofilm production and morphology depending on the autoinducer 2-alkyl-4-quinolone (PQS) and the QS molecules acyl-homoserine lactones. Consequently, in the in vivo pathogenicity model of Caenorhabditis elegans, the mutations in pvdI, pvdJ, and pvdL increased the survival of the worms exposed to supernatants or biofilms of the bacterial cultures. However, the double mutant pvdI/pvdJ increased its toxicity in agreeing with the biofilm production, PVD, PYO, and PCA. The findings indicate that the mutations in pvd genes encode non-ribosomal peptide synthetases impacted the biofilm's structure, but suppressively also of the phenazines, confirming that the siderophores contribute to the bacterial establishment and pathogenicity of P. aeruginosa PAO1.


Asunto(s)
Percepción de Quorum , Sideróforos , Humanos , Animales , Pseudomonas aeruginosa/genética , Piocianina , Biopelículas , Factores de Virulencia/genética , Fenazinas , Proteínas Bacterianas/genética
4.
Microb Ecol ; 86(1): 431-445, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35867140

RESUMEN

The interaction of plants with bacteria and the long-term success of their adaptation to challenging environments depend upon critical traits that include nutrient solubilization, remodeling of root architecture, and modulation of host hormonal status. To examine whether bacterial promotion of phosphate solubilization, root branching and the host auxin response may account for plant growth, we isolated and characterized ten bacterial strains based on their high capability to solubilize calcium phosphate. All strains could be grouped into six Pseudomonas species, namely P. brassicae, P. baetica, P. laurylsulfatiphila, P. chlororaphis, P. lurida, and P. extremorientalis via 16S rRNA molecular analyses. A Solibacillus isronensis strain was also identified, which remained neutral when interacting with Arabidopsis roots, and thus could be used as inoculation control. The interaction of Arabidopsis seedlings with bacterial streaks from pure cultures in vitro indicated that their phytostimulation properties largely differ, since P. brassicae and P. laurylsulfatiphila strongly increased shoot and root biomass, whereas the other species did not. Most bacterial isolates, except P. chlororaphis promoted lateral root formation, and P. lurida and P. chlororaphis strongly enhanced expression of the auxin-inducible gene construct DR5:GUS in roots, but the most bioactive probiotic bacterium P. brassicae could not enhance the auxin response. Inoculation with P. brassicae and P. lurida improved shoot and root growth in medium supplemented with calcium phosphate as the sole Pi source. Collectively, our data indicate the differential responses of Arabidopsis seedlings to inoculation with several Pseudomonas species and highlight the potential of P. brassicae to manage phosphate nutrition and plant growth in a more eco-friendly manner.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Pseudomonas/genética , Plantones , Fosfatos/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Raíces de Plantas/microbiología , Ácidos Indolacéticos/metabolismo , Bacterias/genética
5.
Environ Pollut ; 312: 120084, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36057328

RESUMEN

Research over the last three decades showed that chromium, particularly the oxyanion chromate Cr(VI) behaves as a toxic environmental pollutant that strongly damages plants due to oxidative stress, disruption of nutrient uptake, photosynthesis and metabolism, and ultimately, represses growth and development. However, mild Cr(VI) concentrations promote growth, induce adventitious root formation, reinforce the root cap, and produce twin roots from single root meristems under conditions that compromise cell viability, indicating its important role as a driver for root organogenesis. In recent years, considerable advance has been made towards deciphering the molecular mechanisms for root sensing of chromate, including the identification of regulatory proteins such as SOLITARY ROOT and MEDIATOR 18 that orchestrate the multilevel dynamics of the oxyanion. Cr(VI) decreases the expression of several glutamate receptors, whereas amino acids such as glutamate, cysteine and proline confer protection to plants from hexavalent chromium stress. The crosstalk between plant hormones, including auxin, ethylene, and jasmonic acid enables tissues to balance growth and defense under Cr(VI)-induced oxidative damage, which may be useful to better adapt crops to biotic and abiotic challenges. The highly contrasting responses of plants manifested at the transcriptional and translational levels depend on the concentration of chromate in the media, and fit well with the concept of hormesis, an adaptive mechanism that primes plants for resistance to environmental challenges, toxins or pollutants. Here, we review the contrasting facets of Cr(VI) in plants including the cellular, hormonal and molecular aspects that mechanistically separate its toxic effects from biostimulant outputs.


Asunto(s)
Cromatos , Contaminantes Ambientales , Cromatos/metabolismo , Cromo/química , Cisteína/metabolismo , Cisteína/farmacología , Contaminantes Ambientales/metabolismo , Etilenos/metabolismo , Etilenos/farmacología , Glutamatos/metabolismo , Glutamatos/farmacología , Hormesis , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Prolina/metabolismo , Prolina/farmacología
6.
Plant Sci ; 323: 111396, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35878696

RESUMEN

Serotonin (5-hydroxytryptamine) acts as a neurotransmitter in mammals and is widely distributed in the plant kingdom, where it influences root growth and defense. Mitogen-Activated Protein Kinases (MAPKs) and MAPK phosphatases (MKPs) play critical functions in decoding hormonal signalling, but their possible roles in mediating serotonin responses await investigation. In this report, we unveiled positive roles for the MITOGEN-ACTIVATED PROTEIN KINASE PHOSPHATASE1 (MKP1) in the inhibition of the primary root growth, cell division, meristem structure, and differentiation events in Arabidopsis seedlings. mkp1 mutants were less sensitive to jasmonic acid applications that halted primary root growth in wild-type (WT) plants, and consistently, the neurotransmitter activated the expression of the JASMONATE ZIM-domain (JAZ) proteins JAZ1 and JAZ10, two critical proteins orchestrating jasmonic acid signalling. This effect correlated with exacerbated production of endogenous reactive oxygen species (ROS) in the WT, a process constitutively manifested in mkp1 mutants. These data help to clarify the relationship between serotonin and growth/defense trade-offs, and reveal the importance of the MAPK pathway in root development through ROS production.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oxilipinas , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Serotonina/metabolismo , Serotonina/farmacología
7.
J Plant Physiol ; 275: 153738, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35690030

RESUMEN

Plants being sessile organisms are exposed to various biotic and abiotic factors, thus causing stress. The Pseudomonas aeruginosa bacterium is an opportunistic pathogen for animals, insects, and plants. Direct exposure of Arabidopsis thaliana to the P. aeruginosa PAO1 strain induces plant death by producing a wide variety of virulence factors, which are regulated mainly by quorum sensing systems. Besides virulence factors, P. aeruginosa PAO1 also produces cyclodipeptides (CDPs), which possess auxin-like activity and promote plant growth through activation of the target of the rapamycin (AtTOR) pathway. On the other hand, plant defense mechanisms are regulated through the production of phytohormones, such as salicylic acid (SA) and jasmonic acid (JA), which are induced in response to pathogen-associated molecular patterns (PAMPs), activating defense genes associated with SA and JA such as PATHOGENESIS-RELATED-1 (PR-1) and LIPOXYGENASE2 (LOX2), respectively. PR proteins are suggested to play critical roles in coordinating the Systemic Acquired Resistance (SAR). In contrast, LOX proteins (LOX2, LOX3, and LOX4) have been associated with the production of JA by producing its precursors, oxylipins. The activation of defense mechanisms involves signaling cascades such as Mitogen-Activated Protein Kinases (MAPKs) or the TOR pathway as a switch for re-directing energy towards defense or growth. In this work, we challenged A. thaliana (wild type, mpk6 or mpk3 mutants, and overexpressing TOR) seedlings with P. aeruginosa PAO1 strains to identify the role of bacterial CDPs in the plant immune response. Results showed that the pre-exposure of these Arabidopsis seedlings to CDPs significantly reduced plant infection of the pathogenic P. aeruginosa PAO1 strains, indicating that plants that over-express AtTOR or lack MPK3/MPK6 protein-kinases are more susceptible to the pathogenic effects. In addition, CDPs induced the GUS activity only in the LOX2::GUS plants, indicative of JA-signaling activation. Our findings indicate that the CDPs are molecules that trigger SA-independent and JA-dependent defense responses in A. thaliana; hence, bacterial CDPs may be considered elicitors of the Arabidopsis immune response to pathogens.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Inmunidad , Oxilipinas/metabolismo , Desarrollo de la Planta , Enfermedades de las Plantas/microbiología , Pseudomonas aeruginosa , Ácido Salicílico/metabolismo , Factores de Virulencia/metabolismo , Factores de Virulencia/farmacología
8.
Front Oncol ; 12: 790537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359411

RESUMEN

The incidence of human cervix adenocarcinoma (CC) caused by papillomavirus genome integration into the host chromosome is the third most common cancer among women. Bacterial cyclodipeptides (CDPs) exert cytotoxic effects in human cervical cancer HeLa cells, primarily by blocking the PI3K/Akt/mTOR pathway, but downstream responses comprising gene expression remain unstudied. Seeking to understand the cytotoxic and anti-proliferative effects of CDPs in HeLa cells, a global RNA-Seq analysis was performed. This strategy permitted the identification of 151 differentially expressed genes (DEGs), which were either up- or down-regulated in response to CDPs exposure. Database analysis, including Gene Ontology (COG), and the Kyoto Encyclopedia of Genes and Genomes (KEGG), revealed differential gene expression on cancer transduction signals, and metabolic pathways, for which, expression profiles were modified by the CDPs exposure. Bioinformatics confirmed the impact of CDPs in the differential expression of genes from signal transduction pathways such as PI3K-Akt, mTOR, FoxO, Wnt, MAPK, P53, TGF-ß, Notch, apoptosis, EMT, and CSC. Additionally, the CDPs exposure modified the expression of cancer-related transcription factors involved in the regulation of processes such as epigenetics, DNA splicing, and damage response. Interestingly, transcriptomic analysis revealed the participation of genes of the mevalonate and cholesterol biosynthesis pathways; in agreement with this observation, total cholesterol diminished, confirming the blockage of the cholesterol synthesis by the exposure of HeLa cells to CDPs. Interestingly, the expression of some genes of the mevalonate and cholesterol synthesis such as HMGS1, HMGCR, IDI1, SQLE, MSMO1, SREBF1, and SOAT1 was up-regulated by CDPs exposure. Accordingly, metabolites of the mevalonate pathway were accumulated in cultures treated with CDPs. This finding further suggests that the metabolism of cholesterol is crucial for the occurrence of CC, and the blockade of the sterol synthesis as an anti-proliferative mechanism of the bacterial CDPs, represents a reasonable chemotherapeutic drug target to explore. Our transcriptomic study supports the anti-neoplastic effects of bacterial CDPs in HeLa cells shown previously, providing new insights into the transduction signals, transcription factors and metabolic pathways, such as mevalonate and cholesterol that are impacted by the CDPs and highlights its potential as anti-neoplastic drugs.

9.
Plant Mol Biol ; 108(1-2): 77-91, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34855067

RESUMEN

KEY MESSAGE: The role of the root cap in the plant response to phosphate deprivation has been scarcely investigated. Here we describe early structural, physiological and molecular changes prior to the determinate growth program of the primary roots under low Pi and unveil a critical function of the transcription factor SOMBRERO in low Pi sensing. Mineral nutrient distribution in the soil is uneven and roots efficiently adapt to improve uptake and assimilation of sparingly available resources. Phosphate (Pi) accumulates in the upper layers and thus short and branched root systems proliferate to better exploit organic and inorganic Pi patches. Here we report an early adaptive response of the Arabidopsis primary root that precedes the entrance of the meristem into the determinate developmental program that is a hallmark of the low Pi sensing mechanism. In wild-type seedlings transferred to low Pi medium, the quiescent center domain in primary root tips increases as an early response, as revealed by WOX5:GFP expression and this correlates with a thicker root tip with extra root cap cell layers. The halted primary root growth in WT seedlings could be reversed upon transfer to medium supplemented with 250 µM Pi. Mutant and gene expression analysis indicates that auxin signaling negatively affects the cellular re-specification at the root tip and enabled identification of the transcription factor SOMBRERO as a critical element that orchestrates both the formation of extra root cap layers and primary root growth under Pi scarcity. Moreover, we provide evidence that low Pi-induced root thickening or the loss-of-function of SOMBRERO is associated with expression of phosphate transporters at the root tip. Our data uncover a developmental window where the root tip senses deprivation of a critical macronutrient to improve adaptation and surveillance.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiencia , Reguladores del Crecimiento de las Plantas/fisiología , Cápsula de Raíz de Planta/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/fisiología , Cápsula de Raíz de Planta/citología , Cápsula de Raíz de Planta/metabolismo , Transducción de Señal
10.
Protoplasma ; 258(4): 729-741, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33410981

RESUMEN

Plant diseases caused by pathogenic fungi result in considerable losses in agriculture. The use of fungicides is an important alternative to combat these pathogens, but may affect both the environment and human health. Plants produce many bioactive compounds to defend themselves from biotic challenges and an increasing number of secondary metabolites have been identified, which may be used to control fungal infections. Here, the bioactivity of a synthetic capsaicinoid, N-vanillyl-octanamide, also termed ABX-I, in the growth of five phytopathogenic fungi was assessed in vitro. The compound inhibited growth of Colletotrichum gloeosporioides, Botrytis cinerea, Colletotrichum acutatum, Fusarium sp., and Rhizoctonia solani AG2, while the magnitude of this effect differed from capsaicin. To investigate if ABX-I could effectively protect crops against phytopathogens, fungal challenges were performed in tomato leaves and fruits, as well as avocado fruits co-infiltrated with Botrytis cinerea or Colletotrichum gloeosporioides, respectively. In both tomato leaves and fruits and avocado fruits, ABX-I decreased the fungal damage not only in vegetative but also in edible tissues, and diminished decay symptoms compared with untreated fruits, which were highly sensitive to the pathogens. Furthermore, ABX-I spray application to tomato or avocado plants did not compromise growth and development, whereas it repressed spore germination and growth of C. gloeosporioides, which suggests its potential as an affordable and promising resource to control fungal diseases in the agronomic sector.


Asunto(s)
Persea , Solanum lycopersicum , Botrytis , Colletotrichum , Frutas , Humanos , Enfermedades de las Plantas
11.
Plant Sci ; 302: 110717, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33288023

RESUMEN

Amino acids serve as structural monomers for protein synthesis and are considered important biostimulants for plants. In this report, the effects of all 20-L amino acids in Arabidopsis primary root growth were evaluated. 15 amino acids inhibited growth, being l-leucine (l-Leu), l-lysine (l-Lys), l-tryptophan (l-Trp), and l-glutamate (l-Glu) the most active, which repressed both cell division and elongation in primary roots. Comparisons of DR5:GFP expression and growth of WT Arabidopsis seedlings and several auxin response mutants including slr, axr1 and axr2 single mutants, arf7/arf19 double mutant and tir1/afb2/afb3 triple mutant, treated with inhibitory concentrations of l-Glu, l-Leu, l-Lys and l-Trp revealed gene-dependent, specific changes in auxin response. In addition, l- isomers of Glu, Leu and Lys, but not l-Trp diminished the GFP fluorescence of pPIN1::PIN1:GFP, pPIN2::PIN2:GFP, pPIN3::PIN3:GFP and pPIN7::PIN7:GFP constructs in root tips. MPK6 activity in roots was enhanced by amino acid treatment, being greater in response to l-Trp while mpk6 mutants supported cell division and elongation at high doses of l-Glu, l-Leu, l-Lys and l-Trp. We conclude that independently of their auxin modulating properties, amino acids signals converge in MPK6 to alter the Arabidopsis primary root growth.


Asunto(s)
Aminoácidos/fisiología , Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Aminoácidos/metabolismo , Arabidopsis/enzimología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácido Glutámico/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Cápsula de Raíz de Planta/metabolismo , Cápsula de Raíz de Planta/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Plantones/enzimología , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Triptófano/metabolismo
12.
Plant Cell Environ ; 43(8): 1989-1999, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32400913

RESUMEN

Plants adapt to soil injury and biotic stress via cell regeneration. In Arabidopsis, root tip damage by genotoxic agents, antibiotics, UV light and cutting induces a program that recovers the missing tissues through activation of stem cells and involves ethylene response factor 115 (ERF115), which triggers cell replenishment. Here, we show that mutation of the gene encoding an MED18 subunit of the transcriptional MEDIATOR complex and chromate [Cr(VI)], an environmental pollutant, synergistically trigger a developmental program that enables the splitting of the meristem in vivo to produce twin roots. Expression of the quiescent centre gene marker WOX5, auxin-inducible DR5:GFP reporter and the ERF115 factor traced the changes in cell identity during the conversion of single primary root meristems into twin roots and were induced in an MED18 and chromate-dependent manner during the root twinning events, which also required auxin redistribution and signalling mediated by IAA14/SOLITARY ROOT (SLR1). Splitting of the root meristem allowed dichotomous root branching in Arabidopsis, a poorly understood process in which stem cells may act to enable whole organ regeneration.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Complejo Mediador/genética , Meristema/genética , Raíces de Plantas/genética , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Cromo/farmacología , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Ácidos Indolacéticos/metabolismo , Complejo Mediador/metabolismo , Meristema/efectos de los fármacos , Mutación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
13.
Genet Mol Biol ; 43(1): e20190221, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32105289

RESUMEN

Auxin regulates a plethora of events during plant growth and development, acting in concert with other phytohormones. YUCCA genes encode flavin monooxygenases that function in tryptophan-dependent auxin biosynthesis. To understand the contribution of the YUCCA4 (YUC4) gene on auxin homeostasis, plant growth and interaction with abscisic acid (ABA) signaling, 35S::YUC4 seedlings were generated, which showed elongated hypocotyls with hyponastic leaves and changes in root system architecture that correlate with enhanced auxin responsive gene expression. Differential expression of PIN1, 2, 3 and 7 auxin transporters was detected in roots of YUC4 overexpressing seedlings compared to the wild-type: PIN1 was down-regulated whereas PIN2, PIN3 and PIN7 were up-regulated. Noteworthy, 35S::YUC4 lines showed enhanced sensitivity to ABA on seed germination and post-embryonic root growth, involving ABI4 transcription factor. The auxin reporter genes DR5::GUS, DR5::GFP and BA3::GUS further revealed that abscisic acid impairs auxin responses in 35S::YUC4 seedlings. Our results indicate that YUC4 overexpression influences several aspects of auxin homeostasis and reveal the critical roles of ABI4 during auxin-ABA interaction in germination and primary root growth.

14.
Protoplasma ; 257(2): 573-582, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31823020

RESUMEN

ALTERED MERISTEM PROGRAM 1 (AMP1) encodes a putative glutamate-carboxypeptidase important for plant growth and development. In this study, by comparing the growth of Arabidopsis wild-type, amp1-10 and amp1-13 mutants, and AMP1-GFP/OX2- and AMP1-GFP/OX7-overexpressing seedlings in vitro and in soil, we uncover the role of AMP1 in biomass accumulation in Arabidopsis. AMP1-overexpressing plants had longer primary roots and increased lateral root number and density than the WT, which correlated with improved root, shoot, and total biomass accumulation. AMP1-overexpressing seedlings had an enhanced rate of growth of primary roots, and accordingly, sucrose supplementation restored primary root growth and promoted lateral root formation in amp1 mutants, while reproductive development, fruit size, and seed content were also modified according to disruption or overexpression of AMP1. We further found that AMP1 plays an important role for stomatal development, guard cell functioning, and carbon assimilation. These data help explain the pleiotropic functions of AMP1 in both root and shoot system development, possibly acting in a sugar-dependent manner for regulation of root architecture, biomass accumulation, and seed production.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Meristema/metabolismo , Fotosíntesis/genética , Arabidopsis/genética , Biomasa
15.
Planta ; 250(4): 1177-1189, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31190117

RESUMEN

MAIN CONCLUSION: A MAPK module, of which MPK6 kinase is an important component, is involved in the coordination of the responses to Pi and Fe in the primary root meristem of Arabidopsis thaliana. Phosphate (Pi) deficiency induces determinate primary root growth in Arabidopsis through cessation of cell division in the meristem, which is linked to an increased iron (Fe) accumulation. Here, we show that Mitogen-Activated Protein Kinase6 (MPK6) has a role in Arabidopsis primary root growth under low Pi stress. MPK6 activity is induced in roots in response to low Pi, and such induction is enhanced by Fe supplementation, suggesting an MPK6 role in coordinating Pi/Fe balance in mediating root growth. The differentiation of the root meristem induced by low Pi levels correlates with altered expression of auxin-inducible genes and auxin transporter levels via MPK6. Our results indicate a critical role of the MPK6 kinase in coordinating meristem cell activity to Pi and Fe availability for proper primary root growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Hierro/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Transporte Biológico , División Celular , Genes Reporteros , Ácidos Indolacéticos/metabolismo , Meristema/enzimología , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas Quinasas Activadas por Mitógenos/genética , Reguladores del Crecimiento de las Plantas , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Estrés Fisiológico
16.
J Ind Microbiol Biotechnol ; 46(7): 925-936, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30963327

RESUMEN

The ethanol stress response in ethanologenic yeast during fermentation involves the swishing of several adaptation mechanisms. In Saccharomyces cerevisiae, the Jac1p and Isu1p proteins constitute the scaffold system for the Fe-S cluster assembly. This study was performed using the over-expression of the Jac1p and Isu1p in the industrially utilized S. cerevisiae UMArn3 strain, with the objective of improving the Fe-S assembly/recycling, and thus counteracting the toxic effects of ethanol stress during fermentation. The UMArn3 yeast was transformed with both the JAC1-His and ISU1-His genes-plasmid contained. The Jac1p and Isu1p His-tagged proteins over-expression in the engineered yeasts was confirmed by immunodetection, rendering increases in ethanol tolerance level from a DL50 = ~ 4.5% ethanol (v/v) to DL50 = ~ 8.2% ethanol (v/v), and survival up 90% at 15% ethanol (v/v) comparing to ~ 50% survival in the control strain. Fermentation by the engineered yeasts showed that the ethanol production was increased, producing 15-20% more ethanol than the control yeast. The decrease of ROS and free-iron accumulation was observed in the engineered yeasts under ethanol stress condition. The results indicate that Jac1p and Isu1p over-expression in the S. cerevisiae UMArn3.3 yeast increased its ethanol tolerance level and ethanol production by a mechanism that involves ROS and iron homeostasis related to the biogenesis/recycling of Fe-S clusters dependent proteins.


Asunto(s)
Etanol/metabolismo , Homeostasis , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentación , Hierro/metabolismo , Proteínas Mitocondriales/genética , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Superóxidos/metabolismo
17.
Plant Mol Biol ; 96(4-5): 339-351, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29344832

RESUMEN

KEY MESSAGE: The function and components of L-glutamate signaling pathways in plants have just begun to be elucidated. Here, using a combination of genetic and biochemical strategies, we demonstrated that a MAPK module is involved in the control of root developmental responses to this amino acid. Root system architecture plays an essential role in plant adaptation to biotic and abiotic factors via adjusting signal transduction and gene expression. L-Glutamate (L-Glu), an amino acid with neurotransmitter functions in animals, inhibits root growth, but the underlying genetic mechanisms are poorly understood. Through a combination of genetic analysis, in-gel kinase assays, detailed cell elongation and division measurements and confocal analysis of expression of auxin, quiescent center and stem cell niche related genes, the critical roles of L-Glu in primary root growth acting through the mitogen-activated protein kinase 6 (MPK6) and the dual specificity serine-threonine-tyrosine phosphatase MKP1 could be revealed. In-gel phosphorylation assays revealed a rapid and dose-dependent induction of MPK6 and MPK3 activities in wild-type Arabidopsis seedlings in response to L-Glu. Mutations in MPK6 or MKP1 reduced or increased root cell division and elongation in response to L-Glu, possibly modulating auxin transport and/or response, but in a PLETHORA1 and 2 independent manner. Our data highlight MPK6 and MKP1 as components of an L-Glu pathway linking the auxin response, and cell division for primary root growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Ácido Glutámico/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Raíces de Plantas/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/biosíntesis , Proliferación Celular/efectos de los fármacos , Inducción Enzimática/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Proteínas de Transporte de Membrana/metabolismo , Meristema/efectos de los fármacos , Meristema/enzimología , Proteínas Quinasas Activadas por Mitógenos/biosíntesis , Mutación/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Proteínas Tirosina Fosfatasas/biosíntesis , Factores de Transcripción/metabolismo
18.
Plant Mol Biol ; 95(1-2): 141-156, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28780645

RESUMEN

KEY MESSAGE: Arabidopsis med12 and med13 mutants exhibit shoot and root phenotypes related to an altered auxin homeostasis. Sucrose supplementation reactivates both cell division and elongation in primary roots as well as auxin-responsive and stem cell niche gene expression in these mutants. An analysis of primary root growth of WT, med12, aux1-7 and med12 aux1 single and double mutants in response to sucrose and/or N-1-naphthylphthalamic acid (NPA) placed MED12 upstream of auxin transport for the sugar modulation of root growth. The MEDIATOR (MED) complex plays diverse functions in plant development, hormone signaling and biotic and abiotic stress tolerance through coordination of transcription. Here, we performed genetic, developmental, molecular and pharmacological analyses to characterize the role of MED12 and MED13 on the configuration of root architecture and its relationship with auxin and sugar responses. Arabidopsis med12 and med13 single mutants exhibit shoot and root phenotypes consistent with altered auxin homeostasis including altered primary root growth, lateral root development, and root hair elongation. MED12 and MED13 were required for activation of cell division and elongation in primary roots, as well as auxin-responsive and stem cell niche gene expression. Remarkably, most of these mutant phenotypes were rescued by supplying sucrose to the growth medium. The growth response of primary roots of WT, med12, aux1-7 and med12 aux1 single and double mutants to sucrose and application of auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) revealed the correlation of med12 phenotype with the activity of the auxin intake permease and suggests that MED12 acts upstream of AUX1 in the root growth response to sugar. These data provide compelling evidence that MEDIATOR links sugar sensing to auxin transport and distribution during root morphogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Carbohidratos/farmacología , Genes de Plantas , Ácidos Indolacéticos/farmacología , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Proteínas Represoras/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , División Celular/efectos de los fármacos , División Celular/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación/genética , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Nicho de Células Madre/efectos de los fármacos , Sacarosa/farmacología
19.
Mol Plant Microbe Interact ; 28(6): 701-10, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26067203

RESUMEN

Trichoderma atroviride is a symbiotic fungus that interacts with roots and stimulates plant growth and defense. Here, we show that Arabidopsis seedlings cocultivated with T. atroviride have an altered root architecture and greater biomass compared with axenically grown seedlings. These effects correlate with increased activity of mitogen-activated protein kinase 6 (MPK6). The primary roots of mpk6 mutants showed an enhanced growth inhibition by T. atroviride when compared with wild-type (WT) plants, while T. atroviride increases MPK6 activity in WT roots. It was also found that T. atroviride produces ethylene (ET), which increases with l-methionine supply to the fungal growth medium. Analysis of growth and development of WT seedlings and etr1, ein2, and ein3 ET-related Arabidopsis mutants indicates a role for ET in root responses to the fungus, since etr1 and ein2 mutants show defective root-hair induction and enhanced primary-root growth inhibition when cocultivated with T. atroviride. Increased MPK6 activity was evidenced in roots of ctr1 mutants, which correlated with repression of primary root growth, thus connecting MPK6 signaling with an ET response pathway. Auxin-inducible gene expression analysis using the DR5:uidA reporter construct further revealed that ET affects auxin signaling through the central regulator CTR1 and that fungal-derived compounds, such as indole-3-acetic acid and indole-3-acetaldehyde, induce MPK6 activity. Our results suggest that T. atroviride likely alters root-system architecture modulating MPK6 activity and ET and auxin action.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Trichoderma/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Biomasa , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Metionina/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Biológicos , Mutación , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Proteínas Quinasas , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...