Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ocul Surf ; 29: 314-330, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37295473

RESUMEN

The chronic use of hypotensive agents eventually leads to ocular surface damage and poor patient compliance during glaucoma management. Thus, new sustained drug delivery systems are needed. This work aimed to develop osmoprotective latanoprost-loaded microemulsion formulations as new potential glaucoma treatments with ocular surface protective properties. The microemulsions were characterized and latanoprost encapsulation efficacy determined. In-vitro tolerance, osmoprotective efficacy, cell internalization as well as cell-microemulsion interactions and distribution were performed. In vivo hypotensive activity was conducted in rabbits to assess intraocular pressure reduction and relative ocular bioavailability. Physicochemical characterization showed nanodroplet sizes within 20-30 nm, being in vitro tolerance within 80 and 100% viability in corneal and conjunctival cells. Besides, microemulsions exhibited higher protection under hypertonic conditions than untreated cells. Cell fluorescence lasted for 11 days after short exposure to coumarin-loaded microemulsions (5 min) showing extensive internalization in different cell compartments by electronic microscopy. In vivo studies exhibited that a single instillation of latanoprost-loaded microemulsions reduced the intraocular pressure for several days (4-6 days without polymer and 9-13 days with polymers). Relative ocular bioavailability was 4.5 and 19 times higher than the marketed formulation. These findings suggest the use of these microemulsions as potential combined strategies for extended surface protection and glaucoma treatment.

2.
Int J Pharm ; 623: 121948, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35752388

RESUMEN

Self-emulsified osmoprotective ophthalmic microemulsions (O/A) were prepared by combining betaine/leucine, clusterin/oleanolic acid, and hyaluronic acid or Dextran. The microemulsions contained an internal oily phase (1.2%), an external aqueous phase (96.3%), cosolvents (1%), and surfactants (1.5%). Physicochemical characterization and in vivo and in vitro tolerance were analyzed. The formulations' osmoprotective in vitro activity was assayed in a hyperosmolar model in human corneal cells. Average internal phase sizes were 16-26 nm for the microemulsions including Dextran. Addition of hyaluronic acid increased the size range (25-39 nm). Addition of osmoprotectants did not change nanodroplet size. The formulations were isotonic (280-290 mOsm/L) with neutral pH (≈7) and zeta potential (-10 to 0 mV), low surface tension (≈35-40mN·m-1), and low viscosity (≈1 mPa·s), except for the microemulsions containing hyaluronic acid (≈4-5 mPa·s). SEM and cryo-TEM showed that all formulations exhibited sphere-shaped morphology with good cell tolerance (≈100%) and were stable at 8 °C for 9 months. Osmoprotective formulations were well tolerated in vitro and in vivo, protecting cells from hypertonic stress. We therefore developed stable microemulsions compatible with the ocular surface that could constitute a novel tool for treatment of ophthalmic diseases.


Asunto(s)
Dextranos , Ácido Hialurónico , Emulsiones/química , Ojo , Humanos , Tensoactivos/química
3.
Exp Eye Res ; 211: 108723, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34384756

RESUMEN

PURPOSE: To develop an easy-to-perform combined model in human corneal epithelial cells (HCECs) and Balb/c mice macrophages J774.A1 (MP) for preliminary screening of potential ophthalmic therapeutic substances. METHODS: HCECs were exposed to different osmolarities (350-500 mOsm/L) and MTT assay was employed for cell survival and flow cytometry to assess apoptosis-necrosis and relative cell size (RCS) distribution. Effectiveness of Betaine, L-Carnitine, Taurine at different concentrations (ranging from 20 mM to 200 mM) was studied. Also, mucoadhesive polymers such as Hyaluronic acid (HA) and Hydroxypropylmethylcellulose (HPMC) (0.4 and 0.8%) were evaluated. Cells were pre-incubated with the compounds (8h) and then exposed to hyperosmotic stress (470 mOsm/L) for 16h. Moreover, anti-inflammatory activity was performed in LPS-stimulated MP. RESULTS: Exposure to hyperosmotic solutions between 450 and 500 mOsm/L promoted the highest cell death after 16h exposures (p < 0.0001) with a drop in viability to 34.96% ± 11.77 for 470 mOsm/L. Pre-incubation with Betaine at 150 mM and 200 mM provided the highest cell survival against hyperosmolarity (66.01% ± 3.65 and 65.90% ± 0.78 respectively) while HA 0.4% was the most effective polymer in preventing cell death (42.2% ± 3.60). Flow cytometry showed that Betaine and Taurine at concentrations between 150-200 mM and 20-80 mM respectively presented the highest anti-apoptotic activity. Also, HA and HPMC polymers reduced apoptotic-induced cell death. All osmoprotectants modified RCS, and polymers increased their value over 100%. L-Carnitine 50 mM, Taurine 40 mM and HA 0.4% presented the highest TNF-α inhibition activity (60%) albeit all of them showed anti-inflammatory inhibition percentages higher than 20% CONCLUSIONS: HCECs hyperosmolar model combined with inflammatory conditions in macrophages allows the screening of osmoprotectants by simulating chronic hyperosmolarity (16h) and inflammation (24h).


Asunto(s)
Síndromes de Ojo Seco/tratamiento farmacológico , Epitelio Corneal/efectos de los fármacos , Soluciones Hipertónicas/farmacología , Inflamación/fisiopatología , Macrófagos/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Betaína/farmacología , Carnitina/farmacología , Supervivencia Celular , Células Cultivadas , Síndromes de Ojo Seco/fisiopatología , Epitelio Corneal/metabolismo , Citometría de Flujo , Humanos , Ácido Hialurónico/farmacología , Derivados de la Hipromelosa/farmacología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Concentración Osmolar , Taurina/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...