Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 14(1): 23, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38156038

RESUMEN

Microalgae have become promising microorganisms for generating high-value commercial products and removing pollutants in aquatic systems. This research evaluated the impact of sunlight intensity on intracellular pigment generation and phosphorus removal from secondary effluents by autoflocculating microalgae consortium BR-UANL-01 in photobioreactor culture. Microalgae were grown in a secondary effluent from a wastewater treatment plant, using a combination of low and high light conditions (photon irradiance; 44 µmol m-2 s-1 and ≈ 1270 µmol m-2 s-1, respectively) and 16:8 h light:dark and 24:0 h light:dark (subdivided into 18:6 LED:sunlight) photoperiods. The autoflocculant rate by consortium BR-UANL-01 was not affected by light intensity and achieved 98% in both treatments. Microalgae produced significantly more lutein, (2.91 mg g-1) under low light conditions. Phosphate removal by microalgae resulted above 85% from the secondary effluent, due to the fact that phosphorus is directly associated with metabolic and replication processes and the highest antioxidant activity was obtained in ABTS•+ assay by the biomass under low light condition (51.71% µmol ET g-1). In conclusion, the results showed that the autoflocculating microalgae consortium BR-UANL-01 is capable of synthesizing intracellular lutein, which presents antioxidant activity, using secondary effluents as a growth medium, without losing its autoflocculating activity and assimilating phosphorus.

2.
Int Microbiol ; 23(2): 201-214, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31321599

RESUMEN

A novel pigmented bacterium, initially identified as 11E, was isolated from a site historically known to have various iron-related ores. Phylogenetic analysis of this bacterial strain showed that it belongs to Serratia marcescens. This pigmented S. marcescens 11E cultured individually with glucose, acetate, and glycerol as electron donors along with the soluble electron acceptor iron (Fe) (III) citrate offered a large reduction extent (45.3 %, 31.4 %, and 13.5 %, respectively). On the other hand, when iron oxide (Fe2O3) is used as electron acceptor, the pigmented strain produced a null reduction extent. Surprisingly, the absence of prodigiosin on the bacterial surface (non-pigmented strain) resulted in a large reduction extent of the non-soluble iron form (20-49%). All these extents were comparable and, in some cases, superior to those presented in the literature. Additionally, in the present study, it was found that anthraquinone sulfonate (AQS) stimulated Fe(III) reduction of soluble and non-soluble Fe species only with pigmented S. marcescens. In contrast, in the culture media with the non-pigmented strain, the presence of AQS did not stimulate the Fe(III) reduction. These results suggest that the pigmented phenotype of S. marcescens 11E may perform non-soluble Fe(III) reduction by electron shuttling. In contrast, for the non-pigmented phenotype of this bacterium, non-soluble Fe(III) reduction seems to proceed by direct contact. Our study demonstrates that this bacterium may be used in bioreduction process of heavy metals or as a biocatalyst in bioelectrochemical devices.


Asunto(s)
Compuestos Férricos/metabolismo , Prodigiosina/metabolismo , Serratia marcescens , Enzimas , Filogenia , ARN Ribosómico 16S/genética , Serratia marcescens/genética , Serratia marcescens/aislamiento & purificación , Serratia marcescens/metabolismo
3.
ISME J ; 13(6): 1497-1505, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30742059

RESUMEN

Seven bacterial strains isolated from a glyphosate-exposed orange plantation site were exposed to 1 mM N-(phosphonomethyl)glycine supplied as a phosphorus source. While some exhibited good biodegradation profiles, the strain 6 P, identified as Bacillus cereus, was the only strain capable of releasing inorganic phosphate to the culture supernatant, while accumulating polyphosphate intracellularly along the experimentation time. The composition and purity of the intracellular polyphosphate accumulated by the strain 6 P were confirmed by FTIR analysis. To date, the biological conversion of glyphosate into polyphosphate has not been reported. However, given the importance of this biopolymer in the survival of microorganisms, it can be expected that this process could represent an important ecological advantage for the adaptation of this strain to an ecological niche exposed to this herbicide. The polyphosphate production yield was calculated as 4 mg l-1, while the glyphosate biodegradation kinetic constant was calculated on 0.003 h-1 using the modified Hockey-Stick first-order kinetic model, with a half-life of 279 h. Our results suggest that B. cereus 6 P is a potential candidate for the generation of an innovative biotechnological process to produce polyphosphate through the biodegradation of the herbicide glyphosate.


Asunto(s)
Bacillus cereus/metabolismo , Glicina/análogos & derivados , Herbicidas/metabolismo , Bacillus cereus/genética , Bacillus cereus/aislamiento & purificación , Biodegradación Ambiental , Glicina/química , Glicina/metabolismo , Herbicidas/química , Cinética , Polifosfatos/química , Polifosfatos/metabolismo , Microbiología del Suelo , Glifosato
4.
Water Sci Technol ; 75(7-8): 1693-1701, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28402311

RESUMEN

This work evaluates the use of native microalgae consortia for a dual role: polishing treatment of municipal wastewater effluents and microalgae biomass feedstock potential for biodiesel or biofertilizer production. An initial screening was undertaken to test N and P removal from secondary effluents and biomass production by 12 consortia. A subsequent treatment was performed by selected consortia (01 and 12) under three operational conditions: stirring (S), S + 12 h of daily aeration (S + A) and S + A enriched with CO2 (S + AC). All treatments resulted in compliance with environmental regulations (e.g. Directive 91/271/EEC) and high removal efficiency of nutrients: 64-79% and 80-94% of total N and PO43--P respectively. During the experiments it was shown that pH alkalinization due to microalgae growth benefits the chemical removal of ammonia and phosphorus. Moreover, advantages of pH increase could be accomplished by intermittent CO2 addition which in this research (treatment S + AC) promoted higher yield and lipid concentration. The resulting dry biomass analysis showed a low lipid content (0.5-4.3%) not ideal for biodiesel production. Moreover, the high rate of ash (29.3-53.0%) suggests that biomass could be readily recycled as a biofertilizer due to mineral supply and organic constituents formed by C, N and P (e.g. carbohydrate, protein, and lipids).


Asunto(s)
Microalgas/metabolismo , Aguas Residuales/química , Purificación del Agua/métodos , Amoníaco/análisis , Amoníaco/metabolismo , Biocombustibles/análisis , Biomasa , Nitrógeno/química , Fósforo/análisis , Fósforo/metabolismo , Purificación del Agua/instrumentación
6.
PLoS One ; 11(2): e0148430, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26828867

RESUMEN

There is a current need to develop low-cost strategies to degrade and eliminate industrially used colorants discharged into the environment. Colorants discharged into natural water streams pose various threats, including: toxicity, degradation of aesthetics and inhibiting sunlight penetration into aquatic ecosystems. Dyes and colorants usually have complex aromatic molecular structures, which make them very stable and difficult to degrade and eliminate by conventional water treatment systems. The results in this work demonstrated that heavy metal-resistant Rhodotorula mucilaginosa strain UANL-001L isolated from the northeast region of Mexico produce an exopolysaccharide (EPS), during growth, which has colorant adsorption potential. The EPS produced was purified by precipitation and dialysis and was then physically and chemically characterized by Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and chemical elemental analysis. Here, the ability of the purified EPS produced to adsorb methylene blue (MB), which served as a model colorant, is studied. MB adsorption by the EPS is found to follow Langmuir Adsorption Isotherm kinetics at 25°C. Further, by calculating the Langmuir constant the adsorption capabilities of the EPS produced by the Rhodotorula mucilaginosa strain UANL-001L is compared to that of other adsorbents, both, microbially produced and from agroindustrial waste. The total adsorption capacity of the EPS, from the Rhodotorula mucilaginosa strain UANL-001L, was found to be two-fold greater than the best bioadsorbents reported in the literature. Finally, apart from determining which heavy metals stimulated EPS production in the strain, the optimal conditions of pH, heavy metal concentration, and rate of agitation of the growing culture for EPS production, was determined. The EPS reported here has the potential of aiding in the efficient removal of colorants both in water treatment plants and in situ in natural water streams.


Asunto(s)
Biomasa , Metales/farmacología , Polisacáridos/metabolismo , Rhodotorula/metabolismo , Adsorción , Aerobiosis , Concentración de Iones de Hidrógeno , Cinética , México , Pruebas de Sensibilidad Microbiana , Rhodotorula/aislamiento & purificación
7.
Bioresour Technol ; 144: 128-34, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23859988

RESUMEN

The effect of pre-treated peat moss on the ability of a sulfate-reducing microbial consortium to remove chromium and lead in solution was evaluated. The most active bacterial community (235.7 mmol H2S/g VSS) was selected from among eight consortia. The peat moss was pre-treated with different HCl concentrations and contact times. The best combination of treatments was 20% HCl for 10 min. The constant substrate affinity Ks was 740 mg COD/L and the ratio COD/SO4(2-) was 0.71. At pH 5, higher production of biogenic sulfide was observed. The up-flowpacked bed bioreactor operated at a flow of 8.3 mL/min for 180 h to obtain removal efficiency (by sulfate-reducing activity) of 90% lead and 65% chromium. It is important to consider that peat moss is a natural adsorbent that further influences the removal efficiency of metal ions.


Asunto(s)
Carbono/farmacología , Cromo/aislamiento & purificación , Plomo/aislamiento & purificación , Consorcios Microbianos , Sphagnopsida/química , Sulfatos/metabolismo , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Reactores Biológicos/microbiología , Ácido Clorhídrico/farmacología , Sulfuro de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Consorcios Microbianos/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Suelo/química , Factores de Tiempo , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...