Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Lett ; 588: 216776, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38432581

RESUMEN

Due to the limited effectiveness of current treatments, the survival rate of patients with metastatic castration-resistant prostate cancer (mCRPC) is significantly reduced. Consequently, it is imperative to identify novel therapeutic targets for managing these patients. Since the invasive ability of cells is crucial for establishing and maintaining metastasis, the aim of this study was to identify the essential regulators of invasive abilities of mCRPC cells by conducting two independent high-throughput CRISPR/Cas9 screenings. Furthermore, some of the top hits were validated using siRNA technology, with protein arginine methyltransferase 7 (PRMT7) emerging as the most promising candidate. We demonstrated that its inhibition or depletion via genetic or pharmacological approaches significantly reduces invasive, migratory and proliferative abilities of mCRPC cells in vitro. Moreover, we confirmed that PRMT7 ablation reduces cell dissemination in chicken chorioallantoic membrane and mouse xenograft assays. Molecularly, PRMT7 reprograms the expression of several adhesion molecules by methylating various transcription factors, such as FoxK1, resulting in the loss of adhesion from the primary tumor and increased motility of mCRPC cells. Furthermore, PRMT7 higher expression correlates with tumor aggressivity and poor overall survival in prostate cancer patients. Thus, this study demonstrates that PRMT7 is a potential therapeutic target and potential biomarker for mPCa.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Proteína-Arginina N-Metiltransferasas , Masculino , Animales , Ratones , Humanos , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Sistemas CRISPR-Cas , Genes Esenciales , Detección Precoz del Cáncer
2.
Trop Med Int Health ; 28(9): 689-698, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37488635

RESUMEN

OBJECTIVE: To analyse acute Chagas disease (CD) outbreaks through a qualitative systematic review and discuss the determinants for its prevention and control. METHODS: Review of studies in which clinical cases of oral transmission were confirmed by parasitological and/or serological tests that included an epidemiological investigation of sources of infection, vectors and reservoirs. RESULTS: Thirty-two outbreaks (1965-2022) were analysed. The main foods involved in oral transmission outbreaks are homemade fruit juices. Different species of vectors were identified. Reservoirs were mainly dogs, rodents and large American opossums (didelphids). CONCLUSION: Under a One Health approach, environmental changes are one of the factors responsible of the rise of oral transmission of CD. Entomological surveillance of vectors and control of the changes in wild and domestic reservoirs and reinforcement of hygiene measures around food in domestic and commercial sites are needed.


Asunto(s)
Enfermedad de Chagas , Salud Única , Trypanosoma cruzi , Animales , Perros , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/prevención & control , Reservorios de Enfermedades/veterinaria , Genotipo , Zarigüeyas
3.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928090

RESUMEN

KRASG12C inhibitors have revolutionized the clinical management of patients with KRASG12C-mutant lung adenocarcinoma. However, patient exposure to these inhibitors leads to the rapid onset of resistance. In this study, we have used genetically engineered mice to compare the therapeutic efficacy and the emergence of tumor resistance between genetic ablation of mutant Kras expression and pharmacological inhibition of oncogenic KRAS activity. Whereas Kras ablation induces massive tumor regression and prevents the appearance of resistant cells in vivo, treatment of KrasG12C/Trp53-driven lung adenocarcinomas with sotorasib, a selective KRASG12C inhibitor, caused a limited antitumor response similar to that observed in the clinic, including the rapid onset of resistance. Unlike in human tumors, we did not observe mutations in components of the RAS-signaling pathways. Instead, sotorasib-resistant tumors displayed amplification of the mutant Kras allele and activation of xenobiotic metabolism pathways, suggesting that reduction of the on-target activity of KRASG12C inhibitors is the main mechanism responsible for the onset of resistance. In sum, our results suggest that resistance to KRAS inhibitors could be prevented by achieving a more robust inhibition of KRAS signaling mimicking the results obtained upon Kras ablation.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Animales , Ratones , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Mutación , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...