Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; : 115600, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964698

RESUMEN

Foodborne pathogens are a grave concern for the for food, medical, environmental, and economic sectors. Their ease of transmission and resistance to treatments, such as antimicrobial agents, make them an important challenge. Food tainted with these pathogens is swiftly rejected, and if ingested, can result in severe illnesses and even fatalities. This review provides and overview of the current status of various pathogens and their metabolites transmitted through food. Despite a plethora of studies on treatments to eradicate and inhibit these pathogens, their indiscriminate use can compromise the sensory properties of food and lead to contamination. Therefore, the study of detection methods such as electrochemical biosensors has been proposed, which are devices with advantages such as simplicity, fast response, and sensitivity. However, these biosensors may also present some limitations. In this regard, it has been reported that nanomaterials with high conductivity, surface-to-volume ratio, and robustness have been observed to improve the detection of foodborne pathogens or their metabolites. Therefore, in this work, we analyze the detection of pathogens transmitted through food and their metabolites using electrochemical biosensors based on nanomaterials.

2.
PLoS One ; 18(10): e0293396, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37883423

RESUMEN

The effect of 20% high degree polymerized agave fructans (HDPAF) on the induction of the defense system in avocado fruits was investigated by transcriptomic analysis at 1, 24 and 72 h after treatment, and the effect of HDPAF on respiration rate and ethylene production was also analyzed. Transcriptomic profiling revealed 5425 differentially expressed genes (DEGs), 55 of which were involved in the pathways related to plant defense response to pathogens. Key genes were associated with phenylpropanoid biosynthesis, mitogen-activated protein signaling, plant hormone signaling, calcium ion signal decoding, and pathogenesis-related proteins. Dysregulated genes involved in ethylene biosynthesis were also identified, and the reduction in ethylene production by HDPAF was corroborated by gas chromatography, where three days of delayed peak production was observed compared to that in water-treated fruits. These results help to understand the mechanism of induction of the avocado defense system by applying HDPAF and support the application of HDPAF as an efficient postharvest treatment to extend the shelf life of the fruit.


Asunto(s)
Agave , Persea , Transcriptoma , Frutas/genética , Frutas/metabolismo , Persea/genética , Agave/genética , Fructanos/farmacología , Fructanos/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Biology (Basel) ; 12(5)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37237565

RESUMEN

Since the fruits of Bromelia pinguin and Bromelia karatas are rich in proteases, the aim of this research was to optimize the hydrolysis process of cooked white shrimp by-products due to the effect of these proteases. A robust Taguchi L16' design was used to optimize the hydrolysis process. Similarly, the amino acid profile by GC-MS and antioxidant capacity (ABTS and FRAP) were determined. The optimal conditions for hydrolysis of cooked shrimp by-products were pH 8.0, 30 °C, 0.5 h, 1 g of substrate and 100 µg/mL of B. karatas, pH 7.5, 40 °C, 0.5 h, 0.5 g substrate and 100 µg/mL enzyme extract from B. pinguin and pH 7.0, 37 °C, 1 h, 1.5 g substrate and 100 µg/mL enzyme bromelain. The optimized hydrolyzates of B. karatas B. pinguin and bromelain had 8 essential amino acids in their composition. The evaluation of the antioxidant capacity of the hydrolyzates under optimal conditions showed more than 80% inhibition of in ABTS radical, B. karatas hydrolyzates had better higher ferric ion reduction capacity with 10.09 ± 0.02 mM TE/mL. Finally, the use of proteolytic extracts from B. pinguin and B. karatas to optimize hydrolysis process allowed obtaining hydrolyzates of cooked shrimp by-products with potential antioxidant capacity.

4.
Photodermatol Photoimmunol Photomed ; 39(1): 51-59, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35801374

RESUMEN

BACKGROUND: Ultraviolet B (UVB) causes photoaging of the skin, the appearance of wrinkles, spots, and alteration of the skin barrier. The main cells in the most superficial layer of the skin are the keratinocytes; these cells play an important role in protecting this organ. OBJECTIVE: The present study aimed to investigate the antioxidant activity of the hydrolysates from kafirin to inhibit UVB-induced responses in human keratinocytes cells (HaCaT). METHODS: Kafirin hydrolysates were produced by enzymatic hydrolysis with alcalase. The activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), in the HaCaT cell line in the presence of UVB and the effects of the hydrolysates against the UVB-induced response were evaluated. Furthermore, the peptides that were generated by hydrolysis were identified in silico using the BIOPEP database. RESULTS: Two protein sequences were identified (α-kafirin and the precursor protein of α-kafirin), in the kafirin extract. A degree of hydrolysis of 18.8% was obtained by hydrolyzing the kafirin extract with alcalase. The kafirin hydrolysates avoided the decrease in endogenous antioxidant enzymes such as SOD, CAT, and GPx reducing the oxidative stress generated by UVB. Using the BIOPEP-UWM database, we found 102 peptide sequences, and it has shown that the peptides have a large amount of hydrophobic amino acids such as proline, alanine, and glutamine, and amino acids with high antioxidant capacity. CONCLUSION: These results suggest that the kafirin hydrolysates can be used as antioxidant agents to ameliorate UVB-induced skin keratinocytes cells' response in vitro, providing an alternative against UVB-induced photoaging.


Asunto(s)
Antioxidantes , Queratinocitos , Humanos , Antioxidantes/farmacología , Antioxidantes/química , Queratinocitos/metabolismo , Péptidos/farmacología , Péptidos/química , Péptidos/metabolismo , Superóxido Dismutasa/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacología , Rayos Ultravioleta/efectos adversos
5.
Molecules ; 27(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36144779

RESUMEN

The objective of this work was to find the optimal conditions by thermosonication-assisted extraction (TSAE) of the total acetogenin content (TAC) and yield from A. muricata seeds, assessing the effect of the temperature (40, 50, and 60 °C), sonication amplitude (80, 90, and 100%), and pulse-cycle (0.5, 0.7, and 1 s). In addition, optimal TSAE conditions of acetogenins (ACGs) were compared with extraction by ultrasound at 25 °C and the soxhlet method measuring TAC and antioxidant capacity. Moreover, solubility and identification of isolated ACGs were performed. Furthermore, the antifungal activity of ACGs crude extract and isolated ACGs was evaluated. Optimal TSAE conditions to extract the highest TAC (35.89 mg/g) and yield (3.6%) were 50 °C, 100% amplitude, and 0.5 s pulse-cycle. TSAE was 2.17-fold and 15.60-fold more effective than ultrasound at 25 °C and the Soxhlet method to extract ACGs with antioxidant capacity. Isolated ACGs were mostly soluble in acetone and methanol. Seven ACGs were identified, and pseudoannonacin was the most abundant. The inhibition of Candida albicans, Candida krusei, and Candida tropicalis was higher from isolated ACGs than crude extract. TSAE was effective to increase the yield in the ACGs extraction from A. muricata seeds and these ACGs have important antifungal activity.


Asunto(s)
Annona , Acetogeninas/farmacología , Acetona , Antifúngicos/farmacología , Antioxidantes/farmacología , Metanol , Extractos Vegetales/farmacología , Semillas
6.
Biocontrol Sci ; 26(2): 67-74, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34092716

RESUMEN

In the present study, the antifungal activity of metabolites produced by Bacillus atrophaeus B5 and a new Brevibacterium strain against Alternaria alternata was evaluated. Assays in vitro and in vivo on tomato fruit during postharvest were made. Based on the 16S rDNA gene sequence analysis, the new strain (strain B7) was identified as Brevibacterium frigoritolerans. Metabolites produced by both bacterial strains reduced the spore germination of A. alternata in vitro and decreased the severity of the alternaria rot disease on tomato fruit during postharvest. This is the first report that demonstrates the potential of B. frigoritolerans B7 as a biocontrol agent against this fungal phytopathogen. The use of metabolites produced by B. atrophaeus B5 and B. frigoritolerans B7 represents a new approach to reduce the use of chemical pesticides and control fungal decay during the postharvest stage.


Asunto(s)
Brevibacterium , Solanum lycopersicum , Alternaria , Bacillus , Frutas , Enfermedades de las Plantas/prevención & control
7.
J Food Sci Technol ; 57(2): 663-672, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32116375

RESUMEN

Spray drying represents a viable alternative for the stabilization of juice and extract of a great diversity of plant in tropical zones, such as jackfruit from Nayarit, Mexico. The jackfruit powder allows physicochemical and microbiological stability for storage, transportation, and marketing. In addition, this allows expansion of consumption and use of these exotic tropical fruits. The aim of this work was to find the best enzymatic hydrolysis and spray drying treatment for obtaining jackfruit pulp and juice in powder without affecting its rheological and physicochemical properties. Jackfruit pulp was treated with three commercial enzymes and their mixtures, and the best treatment was then optimized by Response Surface Methodology. The jackfruit pulp and the hydrolyzed juice were spray dried using maltodextrin as a carrier agent. The best hydrolysis was obtained with Celluzyme® and Pectinex Ultra Pulp® and the optimal conditions were 1% of enzyme concentration, during 3 h at 37 °C (p = 0.92), that leads reducing sugar of 78.50 ± 1.93 mg mL-1 and viscosity of 7.94 ± 0.82 cps (94.7% reduction). The enzyme concentration is a direct function of reducing sugars content, while incubation time is an inverse function of viscosity. The spray drying treatment with the highest yield (74%) without affecting rheological and physicochemical properties compared to the fresh hydrolyzed juice was the treatment with 50% (TSS/weight) maltodextrin.

8.
ACS Omega ; 5(7): 3743-3748, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32118190

RESUMEN

The standardization of secondary electrolytic conductivity cells requires the use of a certified reference material. The accepted certification method involves electrochemical impedance spectroscopy (EIS) to estimate the material's solution resistance. This method normally assumes that the impedance's imaginary component can be neglected; and hence, the measured impedance approximates the real impedance. Thus, a linear extrapolation of the impedance versus the period (inverse frequency) yields solution resistance. However, experimental impedance data usually do not exhibit a linear behavior over the spectra of frequency, which strongly suggest that the ideal capacitive assumption may not strictly apply. To account for the observed nonlinear behavior, we have proposed to introduce the concept of a constant phase element (CPE) to the analysis of impedance. This approach leads to the development of a relationship that improves the fitting of experimental data and improves the accuracy of the estimation, by establishing a critical frequency where extrapolation should be done. Finally, we are presenting simulated results to demonstrate how sizeable capacitive effects can influence the determination of solution resistance, and a final analysis to estimate the impact on constant cell or electrolytic conductivity values.

9.
Microbiol Res ; 210: 26-32, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29625655

RESUMEN

Anthracnose is a fungal disease caused by Colletotrichum species that is detrimental to numerous fruit, including soursop and avocado. The use of fungicides to maintain the high quality of fruit creates a potential health risk. One alternative to this problem is the biological control, which has been applied successfully during postharvest. The Bacillus species are one of the most studied biological agents against postharvest pathogens because accomplish their biocontrol performance by producing a variety of metabolites. In this study, we evaluated the activity of metabolites contained in the cell free supernatant, obtained from Bacillus strain B5 culture, against micelial growth and spore germination of two virulent strains of C. gloeosporioides isolated from soursop and avocado. On the basis of 16S rDNA gene sequence analysis, this strain was identified as Bacillus atrophaeus. A preventive treatment using cell free supernatant, reduced severity and incidence of anthracnose disease on harvested soursop and avocado fruit. B. atrophaeus strain B5 harbors genes involved in the production of antibiotics such as surfactin, bacillomycin and iturin, which could be contributing to the efficiency of the preventive treatment during postharvest. The antagonistic role of metabolites contained in the cell free supernatant against anthracnose disease, provide a new approach by which to attack this problem and can help reduce the use of chemical pesticides, environmental pollution, leading to the safer fruit preservation.


Asunto(s)
Annona/microbiología , Bacillus/fisiología , Agentes de Control Biológico/farmacología , Colletotrichum/efectos de los fármacos , Persea/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Annona/efectos de los fármacos , Annona/crecimiento & desarrollo , Antibiosis , Bacillus/clasificación , Bacillus/genética , Bacillus/aislamiento & purificación , Colletotrichum/crecimiento & desarrollo , Colletotrichum/patogenicidad , ADN Ribosómico/genética , Frutas/efectos de los fármacos , Frutas/microbiología , Fungicidas Industriales , Genes Bacterianos/genética , Lipopéptidos/genética , Lipopéptidos/farmacología , México , Pruebas de Sensibilidad Microbiana , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Péptidos/genética , Péptidos/farmacología , Péptidos Cíclicos/genética , Péptidos Cíclicos/farmacología , Persea/efectos de los fármacos , Persea/crecimiento & desarrollo , Filogenia , Análisis de Secuencia , Esporas Fúngicas/efectos de los fármacos , Esporas Fúngicas/crecimiento & desarrollo
10.
Front Plant Sci ; 8: 956, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28642771

RESUMEN

Avocado (Persea americana) is one of the most important crops in Mexico as it is the main producer, consumer, and exporter of avocado fruit in the world. However, successful avocado commercialization is often reduced by large postharvest losses due to Colletotrichum sp., the causal agent of anthracnose. Chitosan is known to have a direct antifungal effect and acts also as an elicitor capable of stimulating a defense response in plants. However, there is little information regarding the genes that are either activated or repressed in fruits treated with chitosan. The aim of this study was to identify by RNA-seq the genes differentially regulated by the action of low molecular weight chitosan in the avocado-chitosan-Colletotrichum interaction system. The samples for RNA-seq were obtained from fruits treated with chitosan, fruits inoculated with Colletotrichum and fruits both treated with chitosan and inoculated with the fungus. Non-treated and non-inoculated fruits were also analyzed. Expression profiles showed that in short times, the fruit-chitosan system presented a greater number of differentially expressed genes, compared to the fruit-pathogen system. Gene Ontology analysis of differentially expressed genes showed a large number of metabolic processes regulated by chitosan, including those preventing the spread of Colletotrichum. It was also found that there is a high correlation between the expression of genes in silico and qPCR of several genes involved in different metabolic pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...