Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Polym Mater ; 6(7): 4244-4255, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38633815

RESUMEN

A tetrazole-naphthalene linker was used to prepare a nickel MOF (metal-organic framework) (NiNDTz) with interesting properties: a specific surface area SBET of 320 m2g-1 (SLangmuir 436 m2g-1), high thermal stability (Tdonset = 300 °C), and CO2 uptake of 1.85 mmolg-1, attributed to the tetrazole groups to be used as fillers in gas separation membranes. The role of these groups was crucial in the mechanical properties of mixed membranes prepared using polycarbonate as a polymer matrix, providing a very homogeneous filler distribution and also in the gas separation properties since a simultaneous increase in permeability and selectivity was achieved, especially in the hybrid membrane containing 20% filler (PC@NiNDTz-20%). This membrane exhibited an excellent balance between permeability (P) and selectivity (α) with an increase in the permeability of CO2 and H2, 177 and 185%, respectively, and improvements in the selectivity of these gases against greenhouse gases such as methane and ethylene (between 15 and 28% improvement). These results make this membrane competitive to deal with separations in which these gases are involved, and are of special interest for the H2/CH4 separation since it clearly improves the performance of pure PC and no better PC-based membranes have been reported in the literature for this separation.

2.
Polymers (Basel) ; 16(3)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38337319

RESUMEN

The main aim of this work is to demonstrate that well-defined methacrylate-based copolymers with oligoethylene glycol side chains and functional groups such as thiol and glycidyl, obtained by photo-initiated reversible addition-fragmentation chain transfer (RAFT) in ethanol, are highly suitable as templates in the synthesis and protection of ZnO quantum dots (ZnO QDs) with remarkable photoluminescent properties. While the affinity of thiol groups to metallic surfaces is well established, their interaction with metal oxides has received less scrutiny. Furthermore, under basic conditions, glycidyl groups could react with hydroxyl groups on the surface of ZnO, representing another strategy for hybrid synthesis. The size and crystalline morphology of the resulting hybrids were assessed using DLS, TEM, and XRD, indicating that both polymers, even with a low proportion of functional groups (5% mol) are appropriate as templates and ligands for ZnO QDs synthesis. Notably, thiol-containing polymers yield hybrids with ZnO featuring excellent quantum yield (up to 52%), while polymers with glycidyl groups require combination with the organosilane aminopropyl triethoxysilane (APTES) to achieve optimal results. In both cases, these hybrids exhibited robust stability in both ethanol and aqueous environments. Beyond fundamental research, due to the remarkable photoluminescent properties and affordability, these hybrid ZnO QDs are expected to have potential applications in biotechnology and green science; in particular, in this study, we examined their use in the detection of environmental contaminants like Fe2+, Cr6+, and Cu2+. Specifically, the limit of detection achieved at 1.13 µM for the highly toxic Cr6+ underscores the significant sensing capabilities of the hybrids.

3.
Nanomaterials (Basel) ; 12(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36234569

RESUMEN

The remarkable photoluminescent properties, biocompatibility, biodegradability, and antibacterial properties of zinc oxide quantum dots (ZnO QDs) coupled with their low cost and nanoscale size guarantee bio-related and technological applications. However, the effect of the polymeric ligand during synthesis has hardly been investigated compared to other less environmentally friendly QDs. Thus, the objective of this work was to focus on the synthesis of fluorescent hybrid ZnO QDs by the sol-gel method using different polymers with hydroxyl groups as templates and ligands to obtain stable particles in different media. For this purpose, well-defined hydroxylated statistical polymers and block copolymers were synthesized using reversible-addition fragmentation chain transfer (RAFT) polymerization to establish the influence of molecular weight, hydrophobic/hydrophilic balance, and polymer architecture on the colloidal and photophysical properties of the synthesized hybrid ZnO QDs. Dynamic light scattering (DLS), TEM, and X-ray diffraction measurements indicated the formation of stable nanoparticles of a few nanometers. A remarkable enhancement in terms of fluorescence was observed when ZnO QDs were synthesized in the presence of the hydroxylated homopolymers and even more so with block copolymers architecture. Organosilanes combined with the hydroxylated polymers were used to improve the colloidal stability of ZnO QDs in aqueous media. These samples exhibited uniform and stable enhanced photoluminescence for nearly five months of being investigated. Among other applications, the hybrid ZnO QDs synthesized in this work exhibit high selectivity to detect Cr6+, Fe2+, or Cu2+ in water.

4.
Membranes (Basel) ; 11(12)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34940415

RESUMEN

Novel mixed matrix membranes (MMMs) were prepared using Matrimid (M), polysulfone (PSF) or polyphenylene oxide (PPO) as the continuous phase and a porous biphenyl-based knitting aryl polymer as a filler, synthesized through the Friedel-Craft reaction. The filler had little influence on the thermal and morphological properties of the membranes but affected the mechanical and gas transport properties, which were different depending on the type of matrix. Thus, in the case of MMMs based on Matrimid, the filler increased considerably the permeability to all gases, although no improvements in selectivity were achieved. A PSF-based MMM showed minor permeability increases, but not in all gases, while the selectivity was particularly improved for hydrogen separations. A PPO-based MMM did not exhibit variation in permeability nor in permselectivity with the addition of the filler.

5.
Materials (Basel) ; 13(21)2020 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-33142903

RESUMEN

Bionanocomposites based on poly (lactic acid) (PLA) and silica aerogel (SiA) were developed by means of melt extrusion process. PLA-SiA composite films were plasticized with 15 wt.% of acetyl (tributyl citrate) (ATBC) to facilitate the PLA processability as well as to attain flexible polymeric formulations for films for food packaging purposes. Meanwhile, SiA was added in four different proportions (0.5, 1, 3 and 5 wt.%) to evaluate the ability of SiA to improve the thermal, mechanical, and barrier performance of the bionanocomposites. The mechanical performance, thermal stability as well as the barrier properties against different gases (carbon dioxide, nitrogen, and oxygen) of the bionanocomposites were evaluated. It was observed that the addition of 3 wt.% of SiA to the plasticized PLA-ATBC matrix showed simultaneously an improvement on the thermal stability as well as the mechanical and barrier performance of films. Finally, PLA-SiA film formulations were disintegrated in compost at the lab-scale level. The combination of ATBC and SiA sped up the disintegration of PLA matrix. Thus, the bionanocomposites produced here show great potential as sustainable polymeric formulations with interest in the food packaging sector.

6.
Polymers (Basel) ; 12(9)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942610

RESUMEN

The key to the preparation of polymer nanocomposites with new or improved properties resides in the homogeneous dispersion of the filler and in the efficient load transfer between components through strong filler/polymer interfacial interactions. This paper reports on the preparation of a series of nanocomposites of graphene and a polyolefin using different experimental approaches, with the final goal of obtaining multifunctional materials. A high-density polyethylene (HDPE) is employed as the matrix, while unmodified and chemically modified graphene fillers are used. By selecting the correct combination as well as the adequate preparation process, the nanocomposites display optimized thermal and mechanical properties, while also conferring good gas barrier properties and significant levels of electrical conductivity.

7.
J Phys Chem B ; 116(38): 11754-66, 2012 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-22957828

RESUMEN

The transport of lithium ions in cation-exchange membranes based on sulfonated copolyimide membranes is reported. Diffusion coefficients of lithium are estimated as a function of the water content in membranes by using pulsed field gradient (PFG) NMR and electrical conductivity techniques. It is found that the lithium transport slightly decreases with the diminution of water for membranes with water content lying in the range 14 < λ < 26.5, where λ is the number of molecules of water per fixed sulfonate group. For λ < 14, the value of the diffusion coefficient of lithium experiences a sharp decay with the reduction of water in the membranes. The dependence of the diffusion of lithium on the humidity of the membranes calculated from conductivity data using Nernst-Planck type equations follows a trend similar to that observed by NMR. The possible explanation of the fact that the Haven ratio is higher than the unit is discussed. The diffusion of water estimated by (1)H PFG-NMR in membranes neutralized with lithium decreases as λ decreases, but the drop is sharper in the region where the decrease of the diffusion of protons of water also undergoes considerable reduction. The diffusion of lithium ions computed by full molecular dynamics is similar to that estimated by NMR. However, for membranes with medium and low concentration of water, steady state conditions are not reached in the computations and the diffusion coefficients obtained by MD simulation techniques are overestimated. The curves depicting the variation of the diffusion coefficient of water estimated by NMR and full dynamics follow parallel trends, though the values of the diffusion coefficient in the latter case are somewhat higher. The WAXS diffractograms of fully hydrated membranes exhibit the ionomer peak at q = 2.8 nm(-1), the peak being shifted to higher q as the water content of the membranes decreases. The diffractograms present additional peaks at higher q, common to wet and dry membranes, but the peaks are better resolved in the wet membranes. The ionomer peak is not detected in the diffractograms of dry membranes.


Asunto(s)
Litio/química , Naftalenos/química , Resinas Sintéticas/química , Agua/química , Cationes/química , Difusión
8.
J Colloid Interface Sci ; 385(1): 24-33, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22841705

RESUMEN

Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40 nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800 g/mol or PEI 25000 g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8 mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH.


Asunto(s)
Bentonita/química , Cromo/química , Óxido Ferrosoférrico/química , Polietileneimina/química , Purificación del Agua/instrumentación , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
9.
J Phys Chem B ; 112(14): 4253-60, 2008 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-18341328

RESUMEN

Gas transport of carbon dioxide in poly[bisphenol A carbonate-co-4,4'-(3,3,5-trimethylcyclohexylidene)diphenol carbonate] films over a wide range of pressure is described. The interpretation of the experimental results in terms of the dual mode model allowed the evaluation of the parameters of the model that govern the gas permeation process. The value of the diffusion coefficient obtained for carbon dioxide at zero concentration was 2.4 x 10(-8) cm(2) s(-1), at 303 K. This parameter was also measured by using pulsed field gradient NMR finding that its value reaches a nearly constant value of (2.7 +/- 0.9) x 10(-8) cm(2) s(-1), at 298 K, for diffusion times greater than 20 ms. Both the diffusion and solubility coefficients were also computed by using simulation methods based on the transition states theory and the Widom method, respectively. The value obtained for the diffusion coefficient was 1.8 x 10(-8) cm(2) s(-1), at 303 K, which compares very favorably with the experimental measurements. The drop of the simulated solubility coefficient with increasing pressure is sharper than that of the experimental one, at low pressures, and similar, at high pressures.

10.
J Phys Chem B ; 111(49): 13694-702, 2007 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-18001082

RESUMEN

A series of sulfonated diamines were synthesized which were further used to obtain relevant sulfonated naphthalenic copolyimides. Tough and ductile membranes were cast from solutions of the copolyimides in dimethylsulfoxide, which exhibit high ion-exchange capacity and high water uptake. The protonic conductivity of the membranes equilibrated with water lies in the range 1.0-8.6 S/m, at 25 degrees C, being of the same order of magnitude as that reported for perfluorinated acidic membranes. The values of the transport number of protons and sodium ions are close to the unit for very dilute electrolyte solutions, but they lie in the range 0.80-0.90 for moderate concentrations. The membranes exhibit rather high electroosmotic permeability. The similarity of the diffusion coefficients of protons and water in the membranes suggests that the Grottus mechanism governs the protonic conductive process in the acidic membranes equilibrated with water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...