Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 832: 155007, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35381249

RESUMEN

Increasing temperatures along with severe droughts are factors that may jeopardize the survival of the forests in the Mediterranean basin. In this region, Pinus pinaster is a common conifer species, that has been used as a model species in evolutionary studies due to its adaptive response to changing environments. Although its drought tolerance mechanisms are already known, knowledge about the dynamics of its root microbiota is still scarce. We aimed to decipher the structural (bacterial abundance), compositional, functional and associative changes of the P. pinaster rhizosphere bacterial communities in spring and summer, at DNA and RNA level (environmental DNA, live and dead cells, and those synthesizing proteins). A fundamental aspect of root microbiome-based approaches is to guarantee the correct origin of the samples. Thus, we assessed the genotype of host needles and roots from which rhizosphere samples were obtained. For more than 50% of the selected trees, genotype discrepancies were found and in three cases the plant species could not be determined. Rhizosphere bacterial communities were homogeneous with respect to diversity and structural levels regardless of the host genotype in both seasons. Nonetheless, significant changes were seen in the taxonomic profiles depending on the season. Seasonal changes were also evident in the bacterial co-occurrence patterns, both in DNA and RNA libraries. While spring communities switched to more complex networks, summer populations resulted in more compartmentalized networks, suggesting that these communities were facing a disturbance. These results may mirror the future status of bacterial communities in a context of climate change. A keystone hub was ascribed to the genus Phenylobacterium in the functional network calculated for summer. Overall, it is important to validate the origin and identity of plant samples in any plant-microbiota study so that more reliable ecological analyses are performed.


Asunto(s)
Pinus , Rizosfera , Bacterias/genética , Sequías , Genotipo , Pinus/genética , Raíces de Plantas/microbiología , ARN , Microbiología del Suelo , Árboles/genética
2.
Ecol Evol ; 10(18): 9788-9807, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005345

RESUMEN

Adaptation of long-living forest trees to respond to environmental changes is essential to secure their performance under adverse conditions. Water deficit is one of the most significant stress factors determining tree growth and survival. Maritime pine (Pinus pinaster Ait.), the main source of softwood in southwestern Europe, is subjected to recurrent drought periods which, according to climate change predictions for the years to come, will progressively increase in the Mediterranean region. The mechanisms regulating pine adaptive responses to environment are still largely unknown. The aim of this work was to go a step further in understanding the molecular mechanisms underlying maritime pine response to water stress and drought tolerance at the whole plant level. A global transcriptomic profiling of roots, stems, and needles was conducted to analyze the performance of siblings showing contrasted responses to water deficit from an ad hoc designed full-sib family. Although P. pinaster is considered a recalcitrant species for vegetative propagation in adult phase, the analysis was conducted using vegetatively propagated trees exposed to two treatments: well-watered and moderate water stress. The comparative analyses led us to identify organ-specific genes, constitutively expressed as well as differentially expressed when comparing control versus water stress conditions, in drought-sensitive and drought-tolerant genotypes. Different response strategies can point out, with tolerant individuals being pre-adapted for coping with drought by constitutively expressing stress-related genes that are detected only in latter stages on sensitive individuals subjected to drought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...