Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Respir Physiol Neurobiol ; 309: 104001, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36528256

RESUMEN

Respiratory biomechanics constitutes an important topic in clinical practice. Different strategies like mathematical models have been implemented to understand and replicate scenarios allowing deeper analysis. In this paper, a nonlinear N - compartments model is presented, allowing to represent the lung in a heterogeneous way. It considers the resistance of each generation of the airway and each alveolar compartment characterized independently. Includes properties of nonlinear elastance, viscoelasticity, inertia, and surface tension. In this work, to show the functionality of the model, a simulation of four alveolar units coupled to the airway model is presented using pressure as input signal simulating mechanical ventilation. However, the model can be used to simulate any desired number of alveolar units. Values at airway output were compared to the linear model, obtaining a correlation close to 1. Also, was compared to a physical test lung using Hamilton - S1 mechanical ventilator obtaining a positive correlation. The model makes it possible to evaluate the effects of different properties during spontaneous respiration or mechanical ventilation, both at the airway opening and alveolar. These properties include viscoelasticity, surface tension, inertia, among others.


Asunto(s)
Respiración Artificial , Mecánica Respiratoria , Tensión Superficial , Pulmón , Frecuencia Respiratoria , Modelos Biológicos
2.
Respir Physiol Neurobiol ; 294: 103767, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34329768

RESUMEN

A computational model of the transport of gases involved in spontaneous breathing, from the trachea inlet to the alveoli was developed for healthy patients. Convective and diffusive transport mechanisms were considered simultaneously, using a diffusion coefficient (D) that has considered the four main species of gases present in the exchange carried out by the human lung, nitrogen (N2), oxygen (O2), carbon dioxide (CO2) and water vapor (H2O). A Matlab® script was programmed to simulate the trachea-alveolus gas exchange model under three respiratory frequencies: 12, 24 and 40 breaths per minute (BPM), each with three diaphragmatic movements of 2 cm, 4 cm, and 6 cm. During the simulations, the CO2 inlet concentrations in the alveoli and the O2 concentration at the inlet of the trachea were kept constant. A simplified but stable model of mass transport between the trachea and alveoli was obtained, allowing the concentrations to be determined dynamically at the selected test points in the airway.


Asunto(s)
Modelos Teóricos , Alveolos Pulmonares/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Respiración , Tráquea/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...