Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anesthesiology ; 141(1): 131-150, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602502

RESUMEN

BACKGROUND: Dynamic changes in neuronal activity and in noradrenergic locus coeruleus (LC) projections have been proposed during the transition from acute to chronic pain. Thus, the authors explored the cellular cFos activity of the LC and its projections in conjunction with spontaneous pain-like behavior in neuropathic rats. METHODS: Tyrosine hydroxylase:Cre and wild-type Long-Evans rats, males and females, were subjected to chronic constriction injury (CCI) for 2 (short-term, CCI-ST) or 30 days (long-term, CCI-LT), evaluating cFos and Fluoro-Gold expression in the LC, and its projections to the spinal cord (SC) and rostral anterior cingulate cortex (rACC). These tests were carried out under basal conditions (unstimulated) and after noxious mechanical stimulation. LC activity was evaluated through chemogenetic and pharmacologic approaches, as were its projections, in association with spontaneous pain-like behaviors. RESULTS: CCI-ST enhanced basal cFos expression in the LC and in its projection to the SC, which increased further after noxious stimulation. Similar basal activation was found in the neurons projecting to the rACC, although this was not modified by stimulation. Strong basal cFos expression was found in CCI-LT, specifically in the projection to the rACC, which was again not modified by stimulation. No cFos expression was found in the CCI-LT LCipsilateral (ipsi)/contralateral (contra)→SC. Chemogenetics showed that CCI-ST is associated with greater spontaneous pain-like behavior when the LCipsi is blocked, or by selectively blocking the LCipsi→SC projection. Activation of the LCipsi or LCipsi/contra→SC dampened pain-like behavior. Moreover, Designer Receptor Exclusively Activated by Designer Drugs (DREADDs)-mediated inactivation of the CCI-ST LCipsi→rACC or CCI-LT LCipsi/contra→rACC pathway, or intra-rACC antagonism of α-adrenoreceptors, also dampens pain-like behavior. CONCLUSIONS: In the short term, activation of the LC after CCI attenuates spontaneous pain-like behaviors via projections to the SC while increasing nociception via projections to the rACC. In the long term, only the projections from the LC to the rACC contribute to modulate pain-like behaviors in this model.


Asunto(s)
Locus Coeruleus , Ratas Long-Evans , Animales , Locus Coeruleus/fisiopatología , Locus Coeruleus/metabolismo , Ratas , Masculino , Femenino , Conducta Animal/fisiología , Factores de Tiempo , Neuralgia/fisiopatología , Neuralgia/etiología , Neuralgia/metabolismo , Modelos Animales de Enfermedad
2.
Pain ; 163(5): 943-954, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35025190

RESUMEN

ABSTRACT: The transition from acute to chronic pain results in maladaptive brain remodeling, as characterized by sensorial hypersensitivity and the ensuing appearance of emotional disorders. Using the chronic constriction injury of the sciatic nerve as a model of neuropathic pain in male Sprague-Dawley rats, we identified time-dependent plasticity of locus coeruleus (LC) neurons related to the site of injury, ipsilateral (LCipsi) or contralateral (LCcontra) to the lesion, hypothesizing that the LC→dorsal reticular nucleus (DRt) pathway is involved in the pathological nociception associated with chronic pain. LCipsi inactivation with lidocaine increased cold allodynia 2 days after nerve injury but not later. However, similar blockade of LCcontra reduced cold allodynia 7 and 30 days after inducing neuropathy but not earlier. Furthermore, lidocaine blockade of the LCipsi or LCcontra reversed pain-induced depression 30 days after neuropathy. Long-term pain enhances phosphorylated cAMP-response element binding protein expression in the DRtcontra but not in the DRtipsi. Moreover, inactivation of the LCcontra→DRtcontra pathway using dual viral-mediated gene transfer of designer receptor exclusively activated by designer drugs produced consistent analgesia in evoked and spontaneous pain 30 days postinjury. This analgesia was similar to that produced by spinal activation of α2-adrenoreceptors. Furthermore, chemogenetic inactivation of the LCcontra→DRtcontra pathway induced depressive-like behaviour in naïve animals, but it did not modify long-term pain-induced depression. Overall, nerve damage activates the LCipsi, which temporally dampens the neuropathic phenotype. However, the ensuing activation of a LCcontra→DRtcontra facilitatory pain projection contributes to chronic pain, whereas global bilateral LC activation contributes to associated depressive-like phenotype.


Asunto(s)
Dolor Crónico , Neuralgia , Animales , Dolor Crónico/metabolismo , Hiperalgesia/metabolismo , Lidocaína/farmacología , Locus Coeruleus/metabolismo , Masculino , Neuralgia/metabolismo , Ratas , Ratas Sprague-Dawley
3.
Brain ; 145(1): 154-167, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34373893

RESUMEN

There is strong comorbidity between chronic pain and depression, although the neural circuits and mechanisms underlying this association remain unclear. By combining immunohistochemistry, tracing studies and western blotting, with the use of different DREADDS (designer receptor exclusively activated by designer drugs) and behavioural approaches in a rat model of neuropathic pain (chronic constriction injury), we explore how this comorbidity arises. To this end, we evaluated the time-dependent plasticity of noradrenergic locus coeruleus neurons relative to the site of injury: ipsilateral (LCipsi) or contralateral (LCcontra) locus coeruleus at three different time points: short (2 days), mid (7 days) and long term (30-35 days from nerve injury). Nerve injury led to sensorial hypersensitivity from the onset of injury, whereas depressive-like behaviour was only evident following long-term pain. Global chemogenetic blockade of the LCipsi system alone increased short-term pain sensitivity while the blockade of the LCipsi or LCcontra relieved pain-induced depression. The asymmetric contribution of locus coeruleus modules was also evident as neuropathy develops. Hence, chemogenetic blockade of the LCipsi→spinal cord projection, increased pain-related behaviours in the short term. However, this lateralized circuit is not universal as the bilateral chemogenetic inactivation of the locus coeruleus-rostral anterior cingulate cortex pathway or the intra-rostral anterior cingulate cortex antagonism of alpha1- and alpha2-adrenoreceptors reversed long-term pain-induced depression. Furthermore, chemogenetic locus coeruleus to spinal cord activation, mainly through LCipsi, reduced sensorial hypersensitivity irrespective of the time post-injury. Our results indicate that asymmetric activation of specific locus coeruleus modules promotes early restorative analgesia, as well as late depressive-like behaviour in chronic pain and depression comorbidity.


Asunto(s)
Locus Coeruleus , Neuralgia , Animales , Comorbilidad , Depresión , Humanos , Locus Coeruleus/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Ratas
4.
Artículo en Inglés | MEDLINE | ID: mdl-32634539

RESUMEN

Apoptotic caspases are thought to play critical roles in elimination of excessive and non-functional synapses and removal of extra cells during early developmental stages. Hence, an impairment of this process may thus constitute a basis for numerous neurological and psychiatric diseases. This view is especially relevant for dopamine due to its pleiotropic roles in motor control, motivation and reward processing. Here, we have analysed the effect of caspase-3 depletion on the development of catecholaminergic neurons and performed a wide array of neurochemical, ultrastructural and behavioural assays. To achieve this, we performed selective deletion of the Casp3 gene in tyrosine hydroxylase (TH)-expressing cells using Cre-loxP-mediated recombination. Histological evaluation of most relevant catecholaminergic nuclei revealed the ventral mesencephalon as the most affected region. Stereological analysis demonstrated an increase in the number of TH-positive neurons in both the substantia nigra and ventral tegmental area along with enlarged volume of the ventral midbrain. Analysis of main innervating tissues revealed a rather contrasting profile. In striatum, basal extracellular levels and potassium-evoked DA release were significantly reduced in mice lacking Casp3, a clear indication of dopaminergic hypofunction in dopaminergic innervating tissues. This view was sustained by analysis of TH-labelled dopaminergic terminals by confocal and electron microscopy. Remarkably, at a behavioural level, Casp3-deficient mice exhibited impaired social interaction, restrictive interests and repetitive stereotypies, which are considered the core symptoms of autism spectrum disorder (ASD). Our study revitalizes the potential involvement of dopaminergic transmission in ASD and provides an excellent model to get further insights in ASD pathogenesis.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Caspasa 3/deficiencia , Caspasa 3/genética , Dopamina/metabolismo , Eliminación de Gen , Animales , Locomoción/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...