Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Antioxidants (Basel) ; 12(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38136209

RESUMEN

Oxidative stress is essential in developing multiple bone metabolism diseases, including osteoporosis. Single-nucleotide variants (SNVs) have been associated with oxidative stress, promoting an imbalance between the production of reactive oxygen species and the ability to neutralize them, and it has been reported that antioxidant nutrient intake can influence bone mineral density (BMD). This work reports the association between oxidative stress-related SNVs (GPX1-rs1050450, rs17650792, SOD2-rs4880, and CAT-rs769217), BMD, and antioxidant nutrient intake. The study included 1269 Mexican women from the Health Workers Cohort Study. Genotyping was performed using predesigned TaqMan assays. Dietary data were collected using a 116-item semi-quantitative food frequency questionnaire. A dietary antioxidant quality score (DAQS) was used to estimate antioxidant-nutrient intake. Association analysis was estimated via linear, logistic, or quantile regression models. The results showed an association of the rs1050450-A and rs17650792-A alleles with femoral neck BMD (p = 0.038 and p = 0.017, respectively) and the SNV rs4880-A allele with total hip BMD (p = 0.026) in respondents aged 45 years or older. In addition, antioxidant-nutrient intake was associated with the rs4880-GG genotype, being significant for fiber (p = 0.007), riboflavin (p = 0.005), vitamin B6 (p = 0.034), and vitamin D (p = 0.002). The study showed an association between oxidative stress-related SNVs, BMD, and antioxidant-nutrient intake in Mexican women. Therefore, treatments for low BMD could be developed based on antioxidant supplementation.

2.
Nutrients ; 15(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004098

RESUMEN

Postmenopausal women are at an increased risk of developing metabolic syndrome (MetS) due to hormonal changes and lifestyle factors. Gut microbiota (GM) have been linked to the development of MetS, and they are influenced by dietary habits. However, the interactions between dietary patterns (DP) and the GM of postmenopausal women, as well as their influence on MetS, still need to be understood. The present study evaluated the DP and microbiota composition of postmenopausal Mexican women with MetS and those in a control group. Diet was assessed using a food frequency questionnaire, and the GM were profiled using 16S rRNA gene sequencing. Greater adherence to a "healthy" DP was significantly associated with lower values of MetS risk factors. GM diversity was diminished in women with MetS, and it was negatively influenced by an "unhealthy" DP. Moreover, a higher intake of fats and proteins, as well as lower amounts of carbohydrates, showed a reduction in some of the short-chain fatty acid-producing genera in women with MetS, as well as increases in some harmful bacteria. Furthermore, Roseburia abundance was positively associated with dietary fat and waist circumference, which may explain 7.5% of the relationship between this macronutrient and MetS risk factors. These findings suggest that GM and diet interactions are important in the development of MetS in postmenopausal Mexican women.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Metabólico , Humanos , Femenino , Síndrome Metabólico/metabolismo , Posmenopausia , ARN Ribosómico 16S/genética , Dieta
3.
Antioxidants (Basel) ; 12(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37107290

RESUMEN

Osteoporosis is characterized by a decline in bone mineral density (BMD) and increased fracture risk. Free radicals and antioxidant systems play a central role in bone remodeling. This study was conducted to illustrate the role of oxidative-stress-related genes in BMD and osteoporosis. A systematic review was performed following the PRISMA guidelines. The search was computed in PubMed, Web of Sciences, Scopus, EBSCO, and BVS from inception to November 1st, 2022. The risk of bias was evaluated using the Joanna Briggs Institute Critical Appraisal Checklist tool. A total of 427 potentially eligible articles exploring this search question were detected. After removing duplicates (n = 112) and excluding irrelevant manuscripts based on screenings of their titles and abstracts (n = 317), 19 articles were selected for full-text review. Finally, 14 original articles were included in this systematic review after we applied the exclusion and inclusion criteria. Data analyzed in this systematic review indicated that oxidative-stress-related genetic polymorphisms are associated with BMD at different skeletal sites in diverse populations, influencing the risk of osteoporosis or osteoporotic fracture. However, it is necessary to look deep into their association with bone metabolism to determine if the findings can be translated into the clinical management of osteoporosis and its progression.

4.
Nutrients ; 14(17)2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36079803

RESUMEN

Gut microbiota has been suggested to modulate circulating lipids. However, the relationship between the gut microbiota and atherogenic dyslipidemia (AD), defined as the presence of both low HDL-C and hypertriglyceridemia, is not fully understood. Moreover, because obesity is among the main causes of secondary AD, it is important to analyze the effect of gut microbiota composition on lipid profiles after a weight loss intervention. We compared the microbial diversity and taxonomic composition in patients with AD (n = 41) and controls (n = 38) and sought correlations of genera abundance with serum lipid levels in 20 patients after weight loss induced by Roux-en-Y gastric bypass (RYGB) surgery. Gut microbiota composition was profiled using next-generation sequencing of 16S rRNA. Gut microbiota diversity was significantly lower in atherogenic dyslipidemia. Moreover, relative abundance of two genera with LDA score >3.5 (Megasphaera and LPS-producing Escherichia-Shigella), was significantly higher in AD subjects, while the abundance of four short chain fatty acids (SCFA) producing-genera (Christensenellaceae R-7, Ruminococcaceae UCG-014; Akkermansia and [Eubacterium] eligens group) was significantly higher in controls. Notably, [Eubacterium] eligens group abundance was also significantly associated with higher HDL-C levels in RYGB patients one year after surgery. Although dietary polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio and PUFA intake were higher in controls than in AD subjects, of the four genera differentiated in cases and controls, only Akkermansia abundance showed a positive and significant correlation with PUFA/SFA ratio. Our results suggest that SCFA-producing bacteria promote a healthy lipid homeostasis, while the presence of LPS-producing bacteria such Escherichia-Shigella may contribute to the development of atherogenic dyslipidemia.


Asunto(s)
Cirugía Bariátrica , Dislipidemias , Microbioma Gastrointestinal , Ácidos Grasos Volátiles , Humanos , Lipopolisacáridos , ARN Ribosómico 16S/genética , Pérdida de Peso
5.
Arterioscler Thromb Vasc Biol ; 41(9): 2494-2508, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34233476

RESUMEN

Objective: Low HDL-C (high-density lipoprotein cholesterol) is the most frequent dyslipidemia in Mexicans, but few studies have examined the underlying genetic basis. Our purpose was to identify genetic variants associated with HDL-C levels and cardiovascular risk in the Mexican population. Approach and Results: A genome-wide association studies for HDL-C levels in 2335 Mexicans, identified four loci associated with genome-wide significance: CETP, ABCA1, LIPC, and SIDT2. The SIDT2 missense Val636Ile variant was associated with HDL-C levels and was replicated in 3 independent cohorts (P=5.9×10−18 in the conjoint analysis). The SIDT2/Val636Ile variant is more frequent in Native American and derived populations than in other ethnic groups. This variant was also associated with increased ApoA1 and glycerophospholipid serum levels, decreased LDL-C (low-density lipoprotein cholesterol) and ApoB levels, and a lower risk of premature CAD. Because SIDT2 was previously identified as a protein involved in sterol transport, we tested whether the SIDT2/Ile636 protein affected this function using an in vitro site-directed mutagenesis approach. The SIDT2/Ile636 protein showed increased uptake of the cholesterol analog dehydroergosterol, suggesting this variant affects function. Finally, liver transcriptome data from humans and the Hybrid Mouse Diversity Panel are consistent with the involvement of SIDT2 in lipid and lipoprotein metabolism. Conclusions: This is the first genome-wide association study for HDL-C levels seeking associations with coronary artery disease in the Mexican population. Our findings provide new insight into the genetic architecture of HDL-C and highlight SIDT2 as a new player in cholesterol and lipoprotein metabolism in humans.


Asunto(s)
HDL-Colesterol/sangre , Enfermedad de la Arteria Coronaria/genética , Hiperlipoproteinemia Tipo II/genética , Proteínas de Transporte de Nucleótidos/genética , Polimorfismo de Nucleótido Simple , Adulto , Edad de Inicio , Animales , Biomarcadores/sangre , Estudios de Casos y Controles , Niño , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/epidemiología , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células HEK293 , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Hiperlipoproteinemia Tipo II/sangre , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiología , Masculino , Análisis de la Aleatorización Mendeliana , México/epidemiología , Ratones , Persona de Mediana Edad , Proteínas de Transporte de Nucleótidos/metabolismo , Fenotipo , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...