Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(22): 10751-10759, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38747099

RESUMEN

Break-junction techniques provide the possibility to study electric and thermoelectric properties of single-molecule junctions in great detail. These techniques rely on the same principle of controllably breaking metallic contacts in order to create single-molecule junctions, whilst keeping track of the junction's conductance. Here, we compare results from mechanically controllable break junction (MCBJ) and scanning tunneling microscope (STM) methods, while characterizing conductance properties of the same novel mechanosensitive para- and meta-connected naphtalenophane compounds. In addition, thermopower measurements are carried out for both compounds using the STM break junction (STM-BJ) technique. For the conductance experiments, the same data processing using a clustering analysis is performed. We obtain to a large extent similar results for both methods, although values of conductance and stretching lengths for the STM-BJ technique are slightly larger in comparison with the MCBJ. STM-BJ thermopower experiments show similar Seebeck coefficients for both compounds. An increase in the Seebeck coefficient is revealed, whilst the conductance decreases, after which it saturates at around 10 µV K-1. This phenomenon is studied theoretically using a tight binding model. It shows that changes of molecule-electrode electronic couplings combined with shifts of the resonance energies explain the correlated behavior of conductance and Seebeck coefficient.

2.
Nano Lett ; 20(7): 5339-5345, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32491864

RESUMEN

We present microfabricated thermal actuators to engineer the biaxial strain in two-dimensional (2D) materials. These actuators are based on microheater circuits patterned onto the surface of a polymer with a high thermal expansion coefficient. By running current through the microheater one can vary the temperature of the polymer and induce a controlled biaxial expansion of its surface. This controlled biaxial expansion can be transduced to biaxial strain to 2D materials, placed onto the polymer surface, which in turn induces a shift of the optical spectrum. Our thermal strain actuators can reach a maximum biaxial strain of 0.64%, and they can be modulated at frequencies up to 8 Hz. The compact geometry of these actuators results in a negligible spatial drift of 0.03 µm/°C, which facilitates their integration in optical spectroscopy measurements. We illustrate the potential of this strain engineering platform to fabricate a strain-actuated optical modulator with single-layer MoS2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA