Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Transl Res ; 15(6): 1239-1255, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35355220

RESUMEN

Alternative splicing (AS) plays a major role in the generation of transcript diversity. In the heart, roles have been described for some AS variants, but the global impact and regulation of AS patterns are poorly understood. Here, we studied the AS profiles in heart disease, their relationship with heart development, and the regulatory mechanisms controlling AS dynamics in the mouse heart. We found that AS profiles characterized the different groups and that AS and gene expression changes affected independent genes and biological functions. Moreover, AS changes, specifically in heart disease, were associated with potential protein-protein interaction changes. While developmental transitions were mainly driven by the upregulation of MBNL1, AS changes in disease were driven by a complex regulatory network, where PTBP1 played a central role. Indeed, PTBP1 over-expression was sufficient to induce cardiac hypertrophy and diastolic dysfunction, potentially by perturbing AS patterns.


Asunto(s)
Empalme Alternativo , Cardiopatías , Animales , Ratones , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Corazón , Cardiopatías/genética
3.
Sci Rep ; 11(1): 21369, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725389

RESUMEN

Heart diseases are associated with changes in the biomechanical properties of the myocardial wall. However, there is no modality available to assess myocardial stiffness directly. Brillouin microspectroscopy (mBS) is a consolidated mechanical characterization technique, applied to the study of the viscoelastic and elastic behavior of biological samples and may be a valuable tool for assessing the viscoelastic properties of the cardiac tissue. In this work, viscosity and elasticity were assessed using mBS in heart samples obtained from healthy and unhealthy mice (n = 6 per group). Speckle-tracking echocardiography (STE) was performed to evaluate heart deformation. We found that mBS was able to detect changes in stiffness in the ventricles in healthy myocardium. The right ventricle showed reduced stiffness, in agreement with its increased compliance. mBS measurements correlated strongly with STE data, highlighting the association between displacement and stiffness in myocardial regions. This correlation was lost in pathological conditions studied. The scar region in the infarcted heart presented changes in stiffness when compared to the rest of the heart, and the hypertrophied left ventricle showed increased stiffness following aortic stenosis, compared to the right ventricle. We demonstrate that mBS can be applied to determine myocardial stiffness, that measurements correlate with functional parameters and that they change with disease.


Asunto(s)
Estenosis de la Válvula Aórtica/patología , Infarto del Miocardio/patología , Miocardio/patología , Animales , Estenosis de la Válvula Aórtica/diagnóstico , Modelos Animales de Enfermedad , Ecocardiografía , Elasticidad , Diagnóstico por Imagen de Elasticidad , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/diagnóstico , Análisis Espectral
4.
Circ Heart Fail ; 14(9): e007616, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34412508

RESUMEN

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy type 5 (ARVC5) is an inherited cardiac disease with complete penetrance and an aggressive clinical course caused by mutations in TMEM43 (transmembrane protein 43). There is no cure for ARVC5 and palliative treatment is started once the phenotype is present. A transgenic mouse model of ARVC5 expressing human TMEM43-S358L (TMEM43mut) recapitulates the human disease, enabling the exploration of preventive treatments. The aim of this study is to determine whether preventive treatment with heart failure drugs (ß-blockers, ACE [angiotensin-converting enzyme] inhibitors, mineralocorticoid-receptor antagonists) improves the disease course of ARVC5 in TMEM43mut mice. METHODS: TMEM43mut male/female mice were treated with metoprolol (ß-blockers), enalapril (ACE inhibitor), spironolactone (mineralocorticoid-receptor antagonist), ACE inhibitor + mineralocorticoid-receptor antagonist, ACE inhibitor + mineralocorticoid-receptor antagonist + ß-blockers or left untreated. Drugs were initiated at 3 weeks of age, before ARVC5 phenotype, and serial ECG and echocardiograms were performed. RESULTS: TMEM43mut mice treated with enalapril showed a significantly increased median survival compared with untreated mice (26 versus 21 weeks; P=0.003). Enalapril-treated mice also exhibited increased left ventricular ejection fraction at 4 months compared with controls (37.0% versus 24.9%; P=0.004), shorter QRS duration and reduced left ventricle fibrosis. Combined regimens including enalapril also showed positive effects. Metoprolol decreased QRS voltage prematurely and resulted in a nonsignificant decrease in left ventricular ejection fraction compared with untreated TMEM43mut mice. CONCLUSIONS: Preventive enalapril-based regimens reduced fibrosis, improved ECG, echocardiographic parameters and survival of ARVC5 mice. Early metoprolol did not show positive effects and caused premature ECG abnormalities. Our findings pave the way to consider prophylactic enalapril in asymptomatic ARVC5 genetic carriers.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Displasia Ventricular Derecha Arritmogénica/tratamiento farmacológico , Displasia Ventricular Derecha Arritmogénica/mortalidad , Enalapril/uso terapéutico , Insuficiencia Cardíaca/tratamiento farmacológico , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Corazón/efectos de los fármacos , Insuficiencia Cardíaca/mortalidad , Ventrículos Cardíacos/efectos de los fármacos , Ratones , Volumen Sistólico/efectos de los fármacos , Función Ventricular Izquierda/efectos de los fármacos
6.
Circulation ; 140(14): 1188-1204, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31567019

RESUMEN

BACKGROUND: Arrhythmogenic cardiomyopathy/arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium, resulting in heart failure and sudden cardiac death. The most aggressive arrhythmogenic cardiomyopathy/ARVC subtype is ARVC type 5 (ARVC5), caused by a p.S358L mutation in TMEM43 (transmembrane protein 43). The function and localization of TMEM43 are unknown, as is the mechanism by which the p.S358L mutation causes the disease. Here, we report the characterization of the first transgenic mouse model of ARVC5. METHODS: We generated transgenic mice overexpressing TMEM43 in either its wild-type or p.S358L mutant (TMEM43-S358L) form in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. RESULTS: We found that mice expressing TMEM43-S358L recapitulate the human disease and die at a young age. Mutant TMEM43 causes cardiomyocyte death and severe fibrofatty replacement. We also demonstrate that TMEM43 localizes at the nuclear membrane and interacts with emerin and ß-actin. TMEM43-S358L shows partial delocalization to the cytoplasm, reduced interaction with emerin and ß-actin, and activation of glycogen synthase kinase-3ß (GSK3ß). Furthermore, we show that targeting cardiac fibrosis has no beneficial effect, whereas overexpression of the calcineurin splice variant calcineurin Aß1 results in GSK3ß inhibition and improved cardiac function and survival. Similarly, treatment of TMEM43 mutant mice with a GSK3ß inhibitor improves cardiac function. Finally, human induced pluripotent stem cells bearing the p.S358L mutation also showed contractile dysfunction that was partially restored after GSK3ß inhibition. CONCLUSIONS: Our data provide evidence that TMEM43-S358L leads to sustained cardiomyocyte death and fibrofatty replacement. Overexpression of calcineurin Aß1 in TMEM43 mutant mice or chemical GSK3ß inhibition improves cardiac function and increases mice life span. Our results pave the way toward new therapeutic approaches for ARVC5.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica/patología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Disfunción Ventricular/patología , Animales , Calcineurina/genética , Calcineurina/metabolismo , Diferenciación Celular , Supervivencia Celular/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Ventrículos Cardíacos/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/citología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis Sitio-Dirigida , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Índice de Severidad de la Enfermedad , Disfunción Ventricular/mortalidad
7.
Circ Res ; 125(2): 170-183, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31145021

RESUMEN

RATIONALE: RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored. OBJECTIVE: To investigate the role of SRSF3 in cardiac function. METHODS AND RESULTS: Cardiac SRSF3 expression was high at mid gestation and decreased during late embryonic development. Mice lacking SRSF3 in the embryonic heart showed impaired cardiomyocyte proliferation and died in utero. In the adult heart, SRSF3 expression was reduced after myocardial infarction, suggesting a possible role in cardiac homeostasis. To determine the role of this RBP in the adult heart, we used an inducible, cardiomyocyte-specific SRSF3 knockout mouse model. After SRSF3 depletion in cardiomyocytes, mice developed severe systolic dysfunction that resulted in death within 8 days. RNA-Seq analysis revealed downregulation of mRNAs encoding sarcomeric and calcium handling proteins. Cardiomyocyte-specific SRSF3 knockout mice also showed evidence of alternative splicing of mTOR (mammalian target of rapamycin) mRNA, generating a shorter protein isoform lacking catalytic activity. This was associated with decreased phosphorylation of 4E-BP1 (eIF4E-binding protein 1), a protein that binds to eIF4E (eukaryotic translation initiation factor 4E) and prevents mRNA decapping. Consequently, we found increased decapping of mRNAs encoding proteins involved in cardiac contraction. Decapping was partially reversed by mTOR activation. CONCLUSIONS: We show that cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction. The molecular mechanism underlying this effect likely involves the generation of a short mTOR isoform by alternative splicing, resulting in reduced 4E-BP1 phosphorylation. The identification of mRNA decapping as a mechanism of systolic heart failure may open the way to the development of urgently needed therapeutic tools.


Asunto(s)
Miocitos Cardíacos/metabolismo , Factores de Empalme Serina-Arginina/genética , Disfunción Ventricular/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/fisiología , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Sístole , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Disfunción Ventricular/metabolismo
8.
J Am Coll Cardiol ; 71(6): 654-667, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29420962

RESUMEN

BACKGROUND: In response to pressure overload, the heart develops ventricular hypertrophy that progressively decompensates and leads to heart failure. This pathological hypertrophy is mediated, among others, by the phosphatase calcineurin and is characterized by metabolic changes that impair energy production by mitochondria. OBJECTIVES: The authors aimed to determine the role of the calcineurin splicing variant CnAß1 in the context of cardiac hypertrophy and its mechanism of action. METHODS: Transgenic mice overexpressing CnAß1 specifically in cardiomyocytes and mice lacking the unique C-terminal domain in CnAß1 (CnAß1Δi12 mice) were used. Pressure overload hypertrophy was induced by transaortic constriction. Cardiac function was measured by echocardiography. Mice were characterized using various molecular analyses. RESULTS: In contrast to other calcineurin isoforms, the authors show here that cardiac-specific overexpression of CnAß1 in transgenic mice reduces cardiac hypertrophy and improves cardiac function. This effect is mediated by activation of serine and one-carbon metabolism, and the production of antioxidant mediators that prevent mitochondrial protein oxidation and preserve ATP production. The induction of enzymes involved in this metabolic pathway by CnAß1 is dependent on mTOR activity. Inhibition of serine and one-carbon metabolism blocks the beneficial effects of CnAß1. CnAß1Δi12 mice show increased cardiac hypertrophy and declined contractility. CONCLUSIONS: The metabolic reprogramming induced by CnAß1 redefines the role of calcineurin in the heart and shows for the first time that activation of the serine and one-carbon pathway has beneficial effects on cardiac hypertrophy and function, paving the way for new therapeutic approaches.


Asunto(s)
Calcineurina/metabolismo , Cardiomegalia/metabolismo , Transferasas del Grupo 1-Carbono/metabolismo , Serina/metabolismo , Función Ventricular/efectos de los fármacos , Animales , Calcineurina/farmacología , Calcineurina/uso terapéutico , Cardiomegalia/tratamiento farmacológico , Humanos , Masculino , Ratones , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Función Ventricular/fisiología
9.
FASEB J ; 32(2): 920-934, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29054855

RESUMEN

Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras-/-) and control wild-type (H -ras+/+) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iß protein expression in H -ras-/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras-/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3ß-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iß overexpression in H -ras-/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iß overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iß pathway activation.


Asunto(s)
Angiotensina II/efectos adversos , Cardiomegalia/enzimología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Hipertensión/enzimología , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas p21(ras)/deficiencia , Angiotensina II/farmacología , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/prevención & control , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Embrión de Mamíferos/enzimología , Embrión de Mamíferos/patología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Fibroblastos/enzimología , Fibroblastos/patología , Eliminación de Gen , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipertensión/inducido químicamente , Hipertensión/patología , Ratones , Ratones Noqueados
10.
J Cardiovasc Transl Res ; 10(5-6): 499-501, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28812262

RESUMEN

Heart failure (HF) is a major cause of death and hospitalization worldwide. Despite advances in reducing mortality, prognosis remains poor and prevalence has reached epidemic proportions. The limitations of available preclinical models represent a major hurdle in the development of new therapies. Myocardial infarction (MI) is a main cause of HF in humans, and mouse models of MI are often used to study HF mechanisms and experimental treatments. We investigated whether MI in mice constitutes an appropriate model of HF. Permanent ligation of the left coronary artery induced severe and persistent systolic dysfunction and ventricular dilatation. Mouse follow-up for 10 months showed no significant evidence of lung congestion or other pulmonary defects associated with HF. No difference was observed in the capacity of infarcted mice to exercise compared to control animals. These results indicate that severe cardiac dysfunction in mice is not sufficient to demonstrate the presence of HF.


Asunto(s)
Insuficiencia Cardíaca/etiología , Infarto del Miocardio/complicaciones , Disfunción Ventricular Izquierda/etiología , Función Ventricular Izquierda , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Especificidad de la Especie , Volumen Sistólico , Sístole , Factores de Tiempo , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Remodelación Ventricular
12.
Cardiovasc Res ; 113(10): 1113-1123, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472392

RESUMEN

AIMS: Heart failure (HF) has become an epidemic and constitutes a major medical, social, and economic problem worldwide. Despite advances in medical treatment, HF prognosis remains poor. The development of efficient therapies is hampered by the lack of appropriate animal models in which HF can be reliably determined, particularly in mice. The development of HF in mice is often assumed based on the presence of cardiac dysfunction, but HF itself is seldom proved. Lung ultrasound (LUS) has become a helpful tool for lung congestion assessment in patients at all stages of HF. We aimed to apply this non-invasive imaging tool to evaluate HF in mouse models of both systolic and diastolic dysfunction. METHODS AND RESULTS: We used LUS to study HF in a mouse model of systolic dysfunction, dilated cardiomyopathy, and in a mouse model of diastolic dysfunction, diabetic cardiomyopathy. LUS proved to be a reliable and reproducible tool to detect pulmonary congestion in mice. The combination of LUS and echocardiography allowed discriminating those mice that develop HF from those that do not, even in the presence of evident cardiac dysfunction. The study showed that LUS can be used to identify the onset of HF decompensation and to evaluate the efficacy of therapies for this syndrome. CONCLUSIONS: This novel approach in mouse models of cardiac disease enables for the first time to adequately diagnose HF non-invasively in mice with preserved or reduced ejection fraction, and will pave the way to a better understanding of HF and to the development of new therapeutic approaches.


Asunto(s)
Cardiomiopatía Dilatada/diagnóstico por imagen , Cardiomiopatías Diabéticas/diagnóstico por imagen , Insuficiencia Cardíaca/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Derrame Pleural/diagnóstico por imagen , Edema Pulmonar/diagnóstico por imagen , Investigación Biomédica Traslacional/métodos , Ultrasonografía/métodos , Función Ventricular Izquierda , Animales , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/fisiopatología , Cardiomiopatías Diabéticas/complicaciones , Cardiomiopatías Diabéticas/fisiopatología , Diástole , Modelos Animales de Enfermedad , Ecocardiografía Doppler de Pulso , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Derrame Pleural/etiología , Derrame Pleural/fisiopatología , Valor Predictivo de las Pruebas , Edema Pulmonar/etiología , Edema Pulmonar/fisiopatología , Reproducibilidad de los Resultados , Volumen Sistólico , Sístole , Función Ventricular Derecha
13.
Cell Chem Biol ; 23(11): 1372-1382, 2016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27746127

RESUMEN

Embryonic stem cells (ESC) have the potential to generate all the cell lineages that form the body. However, the molecular mechanisms underlying ESC differentiation and especially the role of alternative splicing in this process remain poorly understood. Here, we show that the alternative splicing regulator MBNL1 promotes generation of the atypical calcineurin Aß variant CnAß1 in mouse ESCs (mESC). CnAß1 has a unique C-terminal domain that drives its localization mainly to the Golgi apparatus by interacting with Cog8. CnAß1 regulates the intracellular localization and activation of the mTORC2 complex. CnAß1 knockdown results in delocalization of mTORC2 from the membrane to the cytoplasm, inactivation of the AKT/GSK3ß/ß-catenin signaling pathway, and defective mesoderm specification. In summary, here we unveil the structural basis for the mechanism of action of CnAß1 and its role in the differentiation of mESCs to the mesodermal lineage.


Asunto(s)
Calcineurina/metabolismo , Células Madre Embrionarias de Ratones/citología , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Calcineurina/análisis , Diferenciación Celular , Línea Celular , Aparato de Golgi/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Complejos Multiproteicos/análisis , Transducción de Señal , Serina-Treonina Quinasas TOR/análisis
14.
Cardiovasc Res ; 109(1): 67-78, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26260798

RESUMEN

AIMS: After myocardial infarction (MI), extensive remodelling of the extracellular matrix contributes to scar formation. While aiming to preserve tissue integrity, this fibrotic response is also associated with adverse events, including a markedly increased risk of heart failure, ventricular arrhythmias, and sudden cardiac death. Cardiac fibrosis is characterized by extensive deposition of collagen and also by increased stiffness as a consequence of enhanced collagen cross-linking. Members of the lysyl oxidase (LOX) family of enzymes are responsible for the formation of collagen cross-links. This study investigates the contribution of LOX family members to the heart response to MI. METHODS AND RESULTS: Experimental MI was induced in C57BL/6 mice by permanent ligation of the left anterior descending coronary artery. The expression of LOX isoforms (LOX and LOXL1-4) was strongly increased upon MI, and this response was accompanied by a significant accumulation of mature collagen fibres in the infarcted area. LOX expression was observed in areas of extensive remodelling, partially overlapping with α-smooth muscle actin-expressing myofibroblasts. Tumour growth factor-ß as well as hypoxia-activated pathways contributed to the induction of LOX expression in cardiac fibroblasts. Finally, in vivo post-infarction treatment with the broadband LOX inhibitor ß-aminopropionitrile or, selectively, with a neutralizing antibody against the canonical LOX isoform attenuated collagen accumulation and maturation and also resulted in reduced ventricular dilatation and improved cardiac function. CONCLUSION: LOX family members contribute significantly to the detrimental effects of cardiac remodelling, highlighting LOX inhibition as a potential therapeutic strategy for post-infarction recovery.


Asunto(s)
Matriz Extracelular/fisiología , Corazón/fisiopatología , Infarto del Miocardio/enzimología , Proteína-Lisina 6-Oxidasa/biosíntesis , Animales , Hipoxia de la Célula , Células Cultivadas , Inducción Enzimática , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/fisiopatología , Proteína-Lisina 6-Oxidasa/antagonistas & inhibidores , Proteína-Lisina 6-Oxidasa/genética , Factor de Crecimiento Transformador beta/farmacología
15.
Circ Cardiovasc Genet ; 8(5): 643-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26175529

RESUMEN

BACKGROUND: Mutations in sarcomeric and cytoskeletal proteins are a major cause of hereditary cardiomyopathies, but our knowledge remains incomplete as to how the genetic defects execute their effects. METHODS AND RESULTS: We used cysteine and glycine-rich protein 3, a known cardiomyopathy gene, in a yeast 2-hybrid screen and identified zinc-finger and BTB domain-containing protein 17 (ZBTB17) as a novel interacting partner. ZBTB17 is a transcription factor that contains the peak association signal (rs10927875) at the replicated 1p36 cardiomyopathy locus. ZBTB17 expression protected cardiac myocytes from apoptosis in vitro and in a mouse model with cardiac myocyte-specific deletion of Zbtb17, which develops cardiomyopathy and fibrosis after biomechanical stress. ZBTB17 also regulated cardiac myocyte hypertrophy in vitro and in vivo in a calcineurin-dependent manner. CONCLUSIONS: We revealed new functions for ZBTB17 in the heart, a transcription factor that may play a role as a novel cardiomyopathy gene.


Asunto(s)
Cardiomiopatías/genética , Insuficiencia Cardíaca/genética , Proteínas Nucleares/genética , Animales , Proteínas de Unión al ADN , Corazón/fisiología , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/fisiología , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Nucleares/fisiología , Proteínas Inhibidoras de STAT Activados/genética , Proteínas Inhibidoras de STAT Activados/fisiología , Ratas , Estrés Fisiológico , Técnicas de Cultivo de Tejidos , Ubiquitina-Proteína Ligasas
16.
Cardiovasc Res ; 102(3): 396-406, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24667850

RESUMEN

AIMS: Ventricular remodelling following myocardial infarction progressively leads to loss of contractile capacity and heart failure. Although calcineurin promotes maladaptive cardiac hypertrophy, we recently showed that the calcineurin splicing variant, CnAß1, has beneficial effects on the infarcted heart. However, whether this variant limits necrosis or improves remodelling is still unknown, precluding translation to the clinical arena. Here, we explored the effects and therapeutic potential of CnAß1 overexpression post-infarction. METHODS AND RESULTS: Double transgenic mice with inducible cardiomyocyte-specific overexpression of CnAß1 underwent left coronary artery ligation followed by reperfusion. Echocardiographic analysis showed depressed cardiac function in all infarcted mice 3 days post-infarction. Induction of CnAß1 overexpression 1 week after infarction improved function and reduced ventricular dilatation. CnAß1-overexpressing mice showed shorter, thicker scars, and reduced infarct expansion, accompanied by reduced myocardial remodelling. CnAß1 induced vascular endothelial growth factor (VEGF) expression in cardiomyocytes, which resulted in increased infarct vascularization. This paracrine angiogenic effect of CnAß1 was mediated by activation of the Akt/mammalian target of rapamycin pathway and VEGF. CONCLUSIONS: Our results indicate that CnAß1 exerts beneficial effects on the infarcted heart by promoting infarct vascularization and preventing infarct expansion. These findings emphasize the translational potential of CnAß1 for gene-based therapies.


Asunto(s)
Calcineurina/fisiología , Terapia Genética , Infarto del Miocardio/terapia , Remodelación Ventricular , Animales , Calcineurina/genética , Ratones , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/prevención & control , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-akt/fisiología , Empalme del ARN , Transducción de Señal/fisiología
17.
J Cardiovasc Transl Res ; 5(6): 814-26, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22915069

RESUMEN

Follistatins are extracellular inhibitors of the TGF-ß family ligands including activin A, myostatin and bone morphogenetic proteins. Follistatin-like 3 (FSTL3) is a potent inhibitor of activin signalling and antagonises the cardioprotective role of activin A in the heart. FSTL3 expression is elevated in patients with heart failure and is upregulated in cardiomyocytes by hypertrophic stimuli, but its role in cardiac remodelling is largely unknown. Here, we show that the production of FSTL3 by cardiomyocytes contributes to the paracrine activation of cardiac fibroblasts, inducing changes in cell adhesion, promoting proliferation and increasing collagen production. We found that FSTL3 is necessary for this response and for the induction of cardiac fibrosis. However, full activation requires additional factors, and we identify connective tissue growth factor as a FSTL3 binding partner in this process. Together, our data unveil a novel mechanism of paracrine communication between cardiomyocytes and fibroblasts that may provide potential as a therapeutic target in heart remodelling.


Asunto(s)
Fibroblastos/metabolismo , Proteínas Relacionadas con la Folistatina/metabolismo , Miocitos Cardíacos/metabolismo , Comunicación Paracrina , Proteínas/metabolismo , Animales , Adhesión Celular , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Colágeno/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/patología , Fibrosis , Proteínas Relacionadas con la Folistatina/deficiencia , Proteínas Relacionadas con la Folistatina/genética , Regulación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Proteínas/genética , Ratas , Transducción de Señal , Factores de Tiempo
18.
Circulation ; 123(24): 2838-47, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21632490

RESUMEN

BACKGROUND: Calcineurin is a calcium-regulated phosphatase that plays a major role in cardiac hypertrophy. We previously described that alternative splicing of the calcineurin Aß (CnAß) gene generates the CnAß1 isoform, with a unique C-terminal region that is different from the autoinhibitory domain present in all other CnA isoforms. In skeletal muscle, CnAß1 is necessary for myoblast proliferation and stimulates regeneration, reducing fibrosis and accelerating the resolution of inflammation. Its role in the heart is currently unknown. METHODS AND RESULTS: We generated transgenic mice overexpressing CnAß1 in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. In contrast to previous studies using an artificially truncated calcineurin, CnAß1 overexpression did not induce cardiac hypertrophy. Moreover, transgenic mice showed improved cardiac function and reduced scar formation after myocardial infarction, with reduced neutrophil and macrophage infiltration and decreased expression of proinflammatory cytokines. Immunoprecipitation and Western blot analysis showed interaction of CnAß1 with the mTOR complex 2 and activation of the Akt/SGK cardioprotective pathway in a PI3K-independent manner. In addition, gene expression profiling revealed that CnAß1 activated the transcription factor ATF4 downstream of the Akt/mTOR pathway to promote the amino acid biosynthesis program, to reduce protein catabolism, and to induce the antifibrotic and antiinflammatory factor growth differentiation factor 15, which protects the heart through Akt activation. CONCLUSIONS: Calcineurin Aß1 shows a unique mode of action that improves cardiac function after myocardial infarction, activating different cardioprotective pathways without inducing maladaptive hypertrophy. These features make CnAß1 an attractive candidate for the development of future therapeutic approaches.


Asunto(s)
Calcineurina/genética , Corazón/fisiología , Contracción Miocárdica/fisiología , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Calcineurina/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Fibrosis , Perfilación de la Expresión Génica , Ratones , Ratones Transgénicos , Infarto del Miocardio/metabolismo , Miocarditis/genética , Miocarditis/metabolismo , Miocarditis/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...