Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712961

RESUMEN

The introduction of phosphorus and nitrogen atoms in carbo-catalysts is a common way to tune the electronic density, and thereby the reactivity, of the material, as well as to introduce surface reactive sites. Numerous environments are reported for the N atoms, but the P-doping chemistry is less explored and focuses on surface POx groups. A one-step synthesis of P/N-doped carbonaceous materials is presented here, using affordable and industrially available urea and tetrakis(hydroxymethyl)phosphonium chloride (THPC) as the N and P sources, respectively. In contrast to most of the synthetic pathways toward P-doped carbonaceous materials, the THPC precursor only displays P-C bonds along the carbon backbone. This resulted in unusual phosphorus environments for the materials obtained from direct thermal treatment of THPC-urea, presumably of type C-P-N according to 31P NMR and XPS. Alternatively, the in situ polymerization and calcination of the precursors were run in calcium chloride hydrate, used as a combined reaction medium and porogen agent. Following this salt-templating strategy led to particularly high phosphorus contents (up to 18 wt%), associated with porosities up to 600 m2 g-1. The so-formed P/N-doped porous materials were employed as metal-free catalysts for the mild oxidative dehydrogenation of N-heterocycles to N-heteroarenes at room temperature and in air.

2.
Adv Mater ; 36(18): e2311655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38240357

RESUMEN

Facile synthesis of porous carbon with high yield and high specific surface area (SSA) from low-cost molecular precursors offers promising opportunities for their industrial applications. However, conventional activation methods using potassium and sodium hydroxides or carbonates suffer from low yields (<20%) and poor control over porosity and composition especially when high SSAs are targeted (>2000 m2 g-1) because nanopores are typically created by etching. Herein, a non-etching activation strategy is demonstrated using cesium salts of low-cost carboxylic acids as the sole precursor in producing porous carbons with yields of up to 25% and SSAs reaching 3008 m2 g-1. The pore size and oxygen content can be adjusted by tuning the synthesis temperature or changing the molecular precursor. Mechanistic investigation unravels the non-classical role of cesium as an activating agent. The cesium compounds that form in situ, including carbonates, oxides, and metallic cesium, have extremely low work function enabling electron injection into organic/carbonaceous framework, promoting condensation, and intercalation of cesium ions into graphitic stacks forming slit pores. The resulting porous carbons deliver a high capacity of 252 mAh g-1 (567 F g-1) and durability of 100 000 cycles as cathodes of Zn-ion capacitors, showing their potential for electrochemical energy storage.

3.
Adv Mater ; 36(13): e2311575, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38152896

RESUMEN

Carbonaceous electrocatalysts offer advantages over metal-based counterparts, being cost-effective, sustainable, and electrochemically stable. Their high surface area increases reaction kinetics, making them valuable for environmental applications involving contaminant removal. However, their rational synthesis is challenging due to the applied high temperatures and activation steps, leading to disordered materials with limited control over doping. Here, a new synthetic pathway using carbon oxide precursors and tin chloride as a p-block metal salt melt is presented. As a result, highly porous oxygen-rich carbon sheets (with a surface area of 1600 m2 g-1) are obtained at relatively low temperatures (400 °C). Mechanistic studies reveal that Sn(II) triggers reductive deoxygenation and concomitant condensation/cross-linking, facilitated by the Sn(II) → Sn(IV) transition. Due to their significant surface area and oxygen doping, these materials demonstrate exceptional electrocatalytic activity in the nitrate-to-ammonia conversion, with an ammonia yield rate of 221 mmol g-1 h-1 and a Faradic efficiency of 93%. These results surpass those of other carbon-based electrocatalysts. In situ Raman studies reveal that the reaction occurs through electrochemical hydrogenation, where active hydrogen is provided by water reduction. This work contributes to the development of carbonaceous electrocatalysts with enhanced performance for sustainable environmental applications.

4.
Adv Sci (Weinh) ; 10(22): e2300526, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37246284

RESUMEN

Functionalized porous carbons are central to various important applications such as energy storage and conversion. Here, a simple synthetic route to prepare oxygen-rich carbon nitrides (CNOs) decorated with stable Ni and Fe-nanosites is demonstrated. The CNOs are prepared via a salt templating method using ribose and adenine as precursors and CaCl2 ·2H2 O as a template. The formation of supramolecular eutectic complexes between CaCl2 ·2H2 O and ribose at relatively low temperatures facilitates the formation of a homogeneous starting mixture, promotes the condensation of ribose through the dehydrating effect of CaCl2 ·2H2 O to covalent frameworks, and finally generates homogeneous CNOs. As a specific of the recipe, the condensation of the precursors at higher temperatures and the removal of water promotes the recrystallization of CaCl2 (T < Tm = 772 °C), which then acts as a hard porogen. Due to salt catalysis, CNOs with oxygen and nitrogen contents as high as 12 and 20 wt%, respectively, can be obtained, while heteroatom content stayed about unchanged even at higher temperatures of synthesis, pointing to the extraordinarily high stability of the materials. After decorating Ni and Fe-nanosites onto the CNOs, the materials exhibit high activity and stability for electrochemical oxygen evolution reaction with an overpotential of 351 mV.

5.
Angew Chem Int Ed Engl ; 62(26): e202217808, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37024432

RESUMEN

Self-templating is a facile strategy for synthesizing porous carbons by direct pyrolysis of organic metal salts. However, the method typically suffers from low yields (<4%) and limited specific surface areas (SSA<2000 m2 g-1 ) originating from low activity of metal cations (e.g., K+ or Na+ ) in promoting construction and activation of carbon frameworks. Here we use cesium acetate as the only precursor of oxo-carbons with large SSA of the order of 3000 m2 g-1 , pore volume approaching 2 cm3 g-1 , tunable oxygen contents, and yields of up to 15 %. We unravel the role of Cs+ as an efficient promoter of framework formation, templating and etching agent, while acetates act as carbon/oxygen sources of carbonaceous frameworks. The oxo-carbons show record-high CO2 uptake of 8.71 mmol g-1 and an ultimate specific capacitance of 313 F g-1 in the supercapacitor. This study helps to understand and rationally tailor the materials design by a still rare organic solid-state chemistry.


Asunto(s)
Acetatos , Metales , Porosidad , Temperatura , Carbono , Cesio , Oxígeno
6.
Adv Sci (Weinh) ; 10(13): e2300099, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36815368

RESUMEN

Materials dictate carbon neutral industrial chemical processes. Visible-light photoelectrocatalysts from abundant resources will play a key role in exploiting solar irradiation. Anionic doping via pre-organization of precursors and further co-polymerization creates tuneable semiconductors. Triazole derivative-purpald, an unexplored precursor with sulfur (S) container, combined in different initial ratios with melamine during one solid-state polycondensation with two thermal steps yields hybrid S-doped carbon nitrides (C3 N4 ). The series of S-doped/C3 N4 -based materials show enhanced optical, electronic, structural, textural, and morphological properties and exhibit higher performance in organic benzylamine photooxidation, oxygen evolution, and similar energy storage (capacitor brief investigation). 50M-50P exhibits the highest photooxidation conversion (84 ± 3%) of benzylamine to imine at 535 nm - green light for 48 h, due to a discrete shoulder (≈700) nm, high sulfur content, preservation of crystal size, new intraband energy states, structural defects by layer distortion, and 10-16 nm pores with arbitrary depth. This work innovates by studying the concomitant relationships between: 1) the precursor decomposition while C3 N4 is formed, 2) the insertion of S impurities, 3) the S-doped C3 N4 property-activity relationships, and 4) combinatorial surface, bulk, structural, optical, and electronic characterization analysis. This work contributes to the development of disordered long-visible-light photocatalysts for solar energy conversion and storage.

7.
Angew Chem Int Ed Engl ; 62(2): e202211663, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36303469

RESUMEN

The influence of structural modifications on the catalytic activity of carbon materials is poorly understood. A collection of carbonaceous materials with different pore networks and high nitrogen content was characterized and used to catalyze four reactions to deduce structure-activity relationships. The CO2 cycloaddition and Knoevenagel reaction depend on Lewis basic sites (electron-rich nitrogen species). The absence of large conjugated carbon domains resulting from the introduction of large amounts of nitrogen in the carbon network is responsible for poor redox activity, as observed through the catalytic reduction of nitrobenzene with hydrazine and the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine using hydroperoxide. The material with the highest activity towards Lewis acid catalysis (in the hydrolysis of (dimethoxymethyl)benzene to benzaldehyde) is the most effective for small molecule activation and presents the highest concentration of electron-poor nitrogen species.

8.
ACS Nano ; 16(9): 14284-14296, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36053675

RESUMEN

With regard to the development of single atom catalysts (SACs), non-noble metal-organic layers combine a large functional variability with cost efficiency. Here, we characterize reacted layers of melamine and melem molecules on a Cu(111) surface by noncontact atomic force microscopy (nc-AFM), X-ray photoelectron spectroscopy (XPS) and ab initio simulations. Upon deposition on the substrate and subsequent heat treatments in ultrahigh vacuum (UHV), these precursors undergo a stepwise dehydrogenation. After full dehydrogenation of the amino groups, the molecular units lie flat and are strongly chemisorbed on the copper substrate. We observe a particularly extreme interaction of the dehydrogenated nitrogen atoms with single copper atoms located at intermolecular sites. In agreement with the nc-AFM measurements performed with an O-terminated copper tip on these triazine- and heptazine-based copper nitride structures, our ab initio simulations confirm a pronounced interaction of oxygen species at these N-Cu-N sites. To investigate the related functional properties of our samples regarding the oxygen reduction reaction (ORR), we developed an electrochemical setup for cyclic voltammetry experiments performed at ambient pressure within a drop of electrolyte in a controlled O2 or N2 environment. Both copper nitride structures show a robust activity in irreversibly catalyzing the reduction of oxygen. The activity is assigned to the intermolecular N-Cu-N sites of the triazine- and heptazine-based copper nitrides or corresponding oxygenated versions (N-CuO-N, N-CuO2-N). By combining nc-AFM characterization on the atomic scale with a direct electrochemical proof of performance, our work provides fundamental insights about active sites in a technologically highly relevant reaction.

9.
Adv Mater ; 34(40): e2206405, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35977414

RESUMEN

Carbon suboxide (C3 O2 ) is a unique molecule able to polymerize spontaneously into highly conjugated light-absorbing structures at temperatures as low as 0 °C. Despite obvious advantages, little is known about the nature and the functional properties of this carbonaceous material. In this work, the aim is to bring "red carbon," a forgotten polymeric semiconductor, back to the community's attention. A solution polymerization process is adapted to simplify the synthesis and control the structure. This allows one to obtain this crystalline covalent material at low temperatures. Both spectroscopic and elemental analyses support the chemical structure represented as conjugated ladder polypyrone ribbons. Density functional theory calculations suggest a crystalline structure of AB stacks of polypyrone ribbons and identify the material as a direct bandgap semiconductor with a medium bandgap that is further confirmed by optical analysis. The material shows promising photocatalytic performance using blue light. Moreover, the simple condensation-aromatization route described here allows the straightforward fabrication of conjugated ladder polymers and can be inspiring for the synthesis of carbonaceous materials at low temperatures in general.

10.
Angew Chem Int Ed Engl ; 61(37): e202206915, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-35894267

RESUMEN

The electrochemical oxygen reduction reaction (ORR) provides a green route for decentralized H2 O2 synthesis, where a structure-selectivity relationship is pivotal for the control of a highly selective and active two-electron pathway. Here, we report the fabrication of a boron and nitrogen co-doped turbostratic carbon catalyst with tunable B-N-C configurations (CNB-ZIL) by the assistance of a zwitterionic liquid (ZIL) for electrochemical hydrogen peroxide production. Combined spectroscopic analysis reveals a fine tailored B-N moiety in CNB-ZIL, where interfacial B-N species in a homogeneous distribution tend to segregate into hexagonal boron nitride domains at higher pyrolysis temperatures. Based on the experimental observations, a correlation between the interfacial B-N moieties and HO2 - selectivity is established. The CNB-ZIL electrocatalysts with optimal interfacial B-N moieties exhibit a high HO2 - selectivity with small overpotentials in alkaline media, giving a HO2 - yield of ≈1787 mmol gcatalyst -1 h-1 at -1.4 V in a flow-cell reactor.

11.
ACS Omega ; 7(14): 11544-11554, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35449944

RESUMEN

Heteroatom doping of carbon networks may introduce active functional groups on the surface of the material, induce electron density changes that alter the polarity of the carbon surface, promote the formation of binding sites for molecules or ions, or make the surface catalytically active for different reactions, among many other alterations. Thus, it is no surprise that heteroatom doping has become a well-established strategy to enhance the performance of carbon-based materials for applications ranging from water remediation and gas sorption to energy storage and conversion. Although oxygen functionalization is sometimes inevitable (i.e., many carbon precursors contain oxygen functionalities), its participation in carbon materials performance is often overlooked on behalf of other heteroatoms (mainly nitrogen). In this Mini-review, we summarize recent and relevant publications on the effect that oxygen functionalization has on carbonaceous materials performance in different electrochemical applications and some strategies to introduce such functionalization purposely. Our aim is to revert the current tendency to overlook it and raise the attention of the materials science community on the benefits of using oxygen functionalization in many state-of-the-art applications.

12.
Chem Commun (Camb) ; 58(31): 4841-4844, 2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35348156

RESUMEN

The preparation of stable and efficient electrocatalysts comprising abundant and non-critical row-materials is of paramount importance for their industrial implementation. Herein, we present a simple synthetic route to prepare Mn(II) sub-nanometric active sites over a highly N-doped noble carbonaceous support. This support not only promotes a strong stabilization of the Mn(II) sites, improving its stability against oxidation, but also provides a convenient coordination environment in the Mn(II) sites able to produce CO, HCOOH and CH3COOH from electrochemical CO2 reduction.

13.
J Colloid Interface Sci ; 602: 880-888, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34186464

RESUMEN

HYPOTHESIS: Developing materials for thermally driven adsorption chillers and adsorption heat pumps is a growing research field due to the potential of these technologies to address up to 50% of the world's total energy demand. These materials must be abundant, easy to synthesize, hydrophilic, and low in cost. Bare carbon materials are hydrophobic and therefore usually not considered for these applications. However, by introducing heteroatoms and tuning their porosity, the hydrophilicity of carbonaceous networks can be increased significantly. EXPERIMENTAL: Herein, a series of highly nitrogen doped carbonaceous materials (CNs) have been synthesized by submitting uric acid to heat treatment at different temperatures in the presence of an inorganic salt mix as solvent and pore template. The effect of the thermal treatment on the materials composition, pore network, and water sorption capability has been studied. FINDINGS: At 800 °C, a nitrogen depleted carbonaceous material with a maximal water uptake of 1.38gH2O g-1 is obtained. Condensation at 750 °C creates an ultra-hydrophilic CN with a water uptake of 0.8 gH2O g-1 at already much lower partial pressures. While the maximum uptake is mainly ascribed to the mesopore volume of the material, the differences in hydrophilicity can be controlled by functionality.


Asunto(s)
Nitrógeno , Agua , Adsorción , Carbono , Ácido Úrico
14.
ACS Appl Mater Interfaces ; 13(25): 29612-29618, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34128637

RESUMEN

Energy consumption is a growing phenomenon in our society causing many negative effects such as global warming. There is a need for the development of new sustainable materials for energy storage. Carbons are materials derivable from biowaste that can rather easily store energy due to their high conductivity and surface area. However, their large-scale processing is challenging as derived materials can be rather heterogeneous and homogenization requires ball milling, a process that can damage carbons in the process of oxidation. Herein, we have prepared caffeine-derived noble nitrogen-doped carbon that withstands the ball milling process without significant oxidation. Additionally, it performs extraordinarily as a cathode material for lithium-ion capacitors, making it an attractive biowaste-derived alternative to commercial heavy metal cathodes.

15.
Adv Sci (Weinh) ; 7(24): 2001767, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344122

RESUMEN

C2N is a unique member of the CnNm family (carbon nitrides), i.e., having a covalent structure that is ideally composed of carbon and nitrogen with only 33 mol% of nitrogen. C2N, with a stable composition, can easily be prepared using a number of precursors. Moreover, it is currently gaining extensive interest owing to its high polarity and good thermal and chemical stability, complementing carbon as well as classical carbon nitride (C3N4) in various applications, such as catalysis, environmental science, energy storage, and biotechnology. In this review, a comprehensive overview on C2N is provided; starting with its preparation methods, followed by a fundamental understanding of structure-property relationships, and finally introducing its application in gas sorption and separation technologies, as supercapacitor and battery electrodes, and in catalytic and biological processes. The review with an outlook on current research questions and future possibilities and extensions based on these material concepts is ended.

16.
ChemSusChem ; 13(24): 6643-6650, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33090683

RESUMEN

Herein, the basic nature of noble covalent, sp2-conjugated materials prepared via direct condensation of guanine in the presence of an inorganic salt melt as structure directing agent was studied. At temperatures below 700 °C stable and more basic addition products with at C/N ratio of 1 (C1 N1 adducts) and with rather uniform micropore sizes were formed. Carbonization at higher temperatures broke the structural motif, and N-doped carbons with 11 wt % and surface areas of 1900 m2 g-1 were obtained. The capability for CO2 sorption and catalytic activity of the materials depended of both their basicity and their pore morphology. The optimization of the synthetic parameters led to very active (100 % conversion) and highly selective (99 % selectivity) heterogeneous base catalysts, as exemplified with the model Knoevenagel condensation of benzaldehyde with malononitrile. The high stability upon oxidation of these covalent materials and their basicity open new perspectives in heterogeneous organocatalysis.

17.
Analyst ; 145(5): 1915-1924, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-31989131

RESUMEN

Gas sensors are important devices used to monitor the type and amount of gas present. Amperometric gas sensors - based on measuring the current upon an applied potential - have been progressing towards miniaturised designs that are smaller, lower cost, faster responding and more robust compared to commercially available sensors. In this work, a planar thin-film electrode device is employed for gas sensing with a thin layer of gel polymer electrolyte (GPE). The GPE consists of a room temperature ionic liquid (RTIL, with two different imidazolium cations and the tetrafluoroborate [BF4]- anion) mixed with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). The polymer acts as a scaffold, with the RTIL ions able to flow within the porous percolated channels, resulting in a highly robust gel with high conductivity. The chemical nature of the polymer allows thin-films (ca. 6 µm) to be evenly dropcast onto planar electrode devices, using minimal amounts of material. Remarkably, no significant effect of resistance was observed in the voltammetric response with such thin films. Oxygen (O2) and ammonia (NH3) gases were detected in the concentration ranges 1-20% O2 and 1-10 ppm NH3 in the two GPEs using both linear sweep voltammetry (LSV) and long-term chronoamperometry (LTCA). LTCA was the preferred detection method for both gases due to the steady-state current response compared to the sloping current response from LSV. The thin nature of the film gave fast response times for both gases - less than 10 seconds for O2 and ca. 40 seconds for NH3 - easily rivaling the commercially available porous electrode designs and allowing for continuous monitoring of gas concentrations. These materials appear to be highly promising candidates as gas detection electrolytes in miniaturised devices, with accurate and fast responses in both the cathodic and anodic potential regions.

18.
J Am Chem Soc ; 141(4): 1766-1774, 2019 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-30621401

RESUMEN

In the present contribution, we report how through the use of metal-organic frameworks (MOFs) composed of addressable combinations of up to four different metal elements it is possible to program the composition of multimetal oxides, which are not attainable by other synthetic methodologies. Thus, due to the ability to distribute multiple metal cations at specific locations in the MOF secondary building units it is possible to code and transfer selected metal ratios to multimetal oxides with novel, desired compositions through a simple calcination process. The demonstration of an enhancement in the electrocatalytic activity of new oxides by preadjusting the metal ratios is here reported for the oxygen reduction reaction, for which activity values comparable to commercial Pt/C catalysts are reached, while showing long stability and methanol tolerance.

19.
Adv Mater ; 31(13): e1805719, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30561777

RESUMEN

Carbon nanomaterials doped with some other lightweight elements were recently described as powerful, heterogeneous, metal-free organocatalysts, adding to their high performance in electrocatalysis. Here, recent observations in traditional catalysis are reviewed, and the underlying reaction mechanisms of the catalyzed organic transformations are explored. In some cases, these are due to specific active functional sites, but more generally the catalytic activity relates to collective properties of the conjugated nanocarbon frameworks and the electron transfer from and to the catalytic centers and substrates. It is shown that the learnings are tightly related to those of electrocatalysis; i.e., the search for better electrocatalysts also improves chemocatalysis, and vice versa. Carbon-carbon heterojunction effects and some perspectives on future possibilities are discussed at the end.


Asunto(s)
Carbono/química , Nanoestructuras/química , Ácidos/química , Boro/química , Catálisis , Técnicas Electroquímicas/métodos , Electrones , Metano/análogos & derivados , Metano/química , Modelos Moleculares , Nanoestructuras/ultraestructura , Nitrógeno/química , Oxidación-Reducción , Azufre/química
20.
ChemSusChem ; 7(12): 3347-55, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25318464

RESUMEN

A template-free approach based on the use of eutectic mixtures composed of 2-hydroxymethylthiophene and furfuryl alcohol has been designed for the preparation of hierarchical sulfur-doped carbons (SPCs) in monolithic form. The temperature used for carbonization, for example, 600, 800, or 900 °C, determined most of the physicochemical properties of the resulting SPCs. Thus, the surface area increased from below 400 to up 775 m(2) g(-1) , along with the carbonization temperature, whereas the sulfur content decreased from approximately 15 to 5 wt %. The oxygen reduction reaction performance in samples carbonized at 900 °C was good, with the four-electron-transfer reaction prevailing over the two-electron-transfer one. Interestingly, the methanol tolerance and stability of these SPCs were also remarkable, with less than 5% current decrease immediately after methanol addition, whereas, in terms of stability, the current decrease was below 8 % after 20000 s. This performance was in the range of that found not only for other SPCs, but also for many nitrogen-doped and even some dual-doped (S and N) ones.


Asunto(s)
Carbono/química , Azufre/química , Tiofenos/química , Catálisis , Mezclas Complejas , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Oxidación-Reducción , Oxígeno/química , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...