Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 8: e8236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31915573

RESUMEN

Cold-Water Corals (CWCs), and most marine calcifiers, are especially threatened by ocean acidification (OA) and the decrease in the carbonate saturation state of seawater. The vulnerability of these organisms, however, also involves other global stressors like warming, deoxygenation or changes in sea surface productivity and, hence, food supply via the downward transport of organic matter to the deep ocean. This study examined the response of the CWC Desmophyllum dianthus to low pH under different feeding regimes through a long-term incubation experiment. For this experiment, 152 polyps were incubated at pH 8.1, 7.8, 7.5 and 7.2 and two feeding regimes for 14 months. Mean calcification rates over the entire duration of the experiment ranged between -0.3 and 0.3 mg CaCO3 g-1d-1. Polyps incubated at pH 7.2 were the most affected and 30% mortality was observed in this treatment. In addition, many of the surviving polyps at pH 7.2 showed negative calcification rates indicating that, in the long term, CWCs may have difficulty thriving in such aragonite undersaturated waters. The feeding regime had a significant effect on skeletal growth of corals, with high feeding frequency resulting in more positive and variable calcification rates. This was especially evident in corals reared at pH 7.5 (ΩA = 0.8) compared to the low frequency feeding treatment. Early life-stages, which are essential for the recruitment and maintenance of coral communities and their associated biodiversity, were revealed to be at highest risk. Overall, this study demonstrates the vulnerability of D. dianthus corals to low pH and low food availability. Future projected pH decreases and related changes in zooplankton communities may potentially compromise the viability of CWC populations.

2.
J Fish Biol ; 93(4): 586-596, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29956313

RESUMEN

Marine protected areas are considered a useful tool to preserve and recover the biodiversity of ecosystems. It is suggested that fisheries not only affect populations of target and bycatch species but also their parasite communities. Parasites can indicate fishery effects on host species and also on the whole local community, but the effects of fisheries and protection measures on parasite communities are relatively unknown. This study analyses parasite communities of the white seabream Diplodus sargus sargus in order to assess potential effects exerted by protection measures within and by fisheries outside a reserve in the western Mediterranean Sea. This small scale analysis offered the opportunity to study different degrees of fishery effects on parasite infracommunities, without considering climatic effects as an additional factor. Parasite infracommunities of fishes from the no-take zone (NTZ) differed in their composition and structure compared with areas completely or partially open to fisheries. The detected spatial differences in the infracommunities derived from generalist parasites and varied slightly between transmission strategies. Monoxenous parasites were richer and more diverse in both fished areas, but more abundant in the no-take, whereas richness and abundance of heteroxenous parasites were higher for the NTZ. In addition to host body size as one factor explaining these spatial variations, differences within parasite infracommunities between the areas may also be linked to increased host densities and habitat quality since the implementation of the NTZ and its protection measures.


Asunto(s)
Biodiversidad , Interacciones Huésped-Parásitos , Parásitos/clasificación , Dorada/parasitología , Animales , Tamaño Corporal , Ecosistema , Explotaciones Pesqueras , Islas , Mar Mediterráneo , Parásitos/fisiología
3.
Sci Total Environ ; 609: 1001-1012, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28783911

RESUMEN

Marine biogeochemistry dynamics in coastal marine areas is strongly influenced by episodic events such as rain, intense winds, river discharges and anthropogenic activities. We evaluated in this study the importance of these forcing events on modulating seasonal changes in the marine biogeochemistry of the northwestern coast of the Mediterranean Sea, based on data gathered from a fixed coastal sampling station in the area. A 4-year (2011-2014) monthly sampling at four depths (0.5m, 20m, 50m and 80m) was performed to examine the time variability of several oceanographic variables: seawater temperature, salinity, inorganic nutrient concentrations (NO3-, PO43- and SiO2), chlorophyll a (Chl a), dissolved organic carbon (DOC) and fluorescent dissolved organic matter (FDOM). FDOM dynamics was predominantly influenced by upwelling events and mixing processes, driven by strong and characteristic wind episodes. SW wind episodes favored the upwelling of deeper and denser waters into the shallower shelf, providing a surplus of autochthonous humic-like material and inorganic nutrients, whereas northerlies favored the homogenization of the whole shelf water column by cooling and evaporation. These different wind-induced processes (deep water intrusion or mixing), reported along the four sampled years, determined a high interannual environmental variability in comparison with other Mediterranean sampling sites.

4.
Sci Rep ; 7(1): 526, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28373662

RESUMEN

A characterization of the thermal ecology of fishes is needed to better understand changes in ecosystems and species distributions arising from global warming. The movement of wild animals during changing environmental conditions provides essential information to help predict the future thermal response of large marine predators. We used acoustic telemetry to monitor the vertical movement activity of the common dentex (Dentex dentex), a Mediterranean coastal predator, in relation to the oscillations of the seasonal thermocline during two summer periods in the Medes Islands marine reserve (NW Mediterranean Sea). During the summer stratification period, the common dentex presented a clear preference for the warm suprathermoclinal layer, and adjusted their vertical movements following the depth changes of the thermocline. The same preference was also observed during the night, when fish were less active. Due to this behaviour, we hypothesize that inter-annual thermal oscillations and the predicted lengthening of summer conditions will have a significant positive impact on the metabolic efficiency, activity levels, and population dynamics of this species, particularly in its northern limit of distribution. These changes in the dynamics of an ecosystem's keystone predator might cascade down to lower trophic levels, potentially re-defining the coastal fish communities of the future.


Asunto(s)
Ecosistema , Peces , Conducta Predatoria , Animales , Calentamiento Global , Mar Mediterráneo , Dinámica Poblacional , Telemetría , Temperatura
5.
PLoS One ; 11(7): e0159813, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27437692

RESUMEN

It is important to account for the movement behaviour of fishes when designing effective marine protected areas (MPAs). Fish movements occur across different spatial and temporal scales and understanding the variety of movements is essential to make correct management decisions. This study describes in detail the movement patterns of an economically and commercially important species, Diplodus sargus, within a well-enforced Mediterranean MPA. We monitored horizontal and vertical movements of 41 adult individuals using passive acoustic telemetry for up to one year. We applied novel analysis and visualization techniques to get a comprehensive view of a wide range of movements. D. sargus individuals were highly territorial, moving within small home ranges (< 1 km2), inside which they displayed repetitive diel activity patterns. Extraordinary movements beyond the ordinary home range were observed under two specific conditions. First, during stormy events D. sargus presented a sheltering behaviour, moving to more protected places to avoid the disturbance. Second, during the spawning season they made excursions to deep areas (> 50 m), where they aggregated to spawn. This study advances our understanding about the functioning of an established MPA and provides important insights into the biology and management of a small sedentary species, suggesting the relevance of rare but important fish behaviours.


Asunto(s)
Migración Animal/fisiología , Conducta Animal/fisiología , Biología Marina , Perciformes/fisiología , Estimulación Acústica , Animales , Conservación de los Recursos Naturales , Ecosistema , Fenómenos de Retorno al Lugar Habitual/fisiología , Mar Mediterráneo , Estaciones del Año , Telemetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...