Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(33): eabp8992, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35977012

RESUMEN

The complexity of multisite phosphorylation mechanisms in regulating nuclear localization signals (NLSs) and nuclear export signals (NESs) is not understood, and its potential has not been used in synthetic biology. The nucleocytoplasmic shuttling of many proteins is regulated by cyclin-dependent kinases (CDKs) that rely on multisite phosphorylation patterns and short linear motifs (SLiMs) to dynamically control proteins in the cell cycle. We studied the role of motif patterns in nucleocytoplasmic shuttling using sensors based on the CDK targets Dna2, Psy4, and Mcm2/3 of Saccharomyces cerevisiae. We designed multisite phosphorylation modules by rearranging phosphorylation sites, cyclin-specific SLiMs, phospho-priming, phosphatase specificity, and NLS/NES phospho-regulation and obtained very different substrate localization dynamics. These included ultrasensitive responses with and without a delay, graded responses, and different homeostatic plateaus. Thus, CDK can do much more than trigger sequential switches during the cell cycle as it can drive complex patterns of protein localization and activity by using multisite phosphorylation networks.

2.
Elife ; 102021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33616038

RESUMEN

The committed step of eukaryotic DNA replication occurs when the pairs of Mcm2-7 replicative helicases that license each replication origin are activated. Helicase activation requires the recruitment of Cdc45 and GINS to Mcm2-7, forming Cdc45-Mcm2-7-GINS complexes (CMGs). Using single-molecule biochemical assays to monitor CMG formation, we found that Cdc45 and GINS are recruited to loaded Mcm2-7 in two stages. Initially, Cdc45, GINS, and likely additional proteins are recruited to unstructured Mcm2-7 N-terminal tails in a Dbf4-dependent kinase (DDK)-dependent manner, forming Cdc45-tail-GINS intermediates (CtGs). DDK phosphorylation of multiple phosphorylation sites on the Mcm2-7 tails modulates the number of CtGs formed per Mcm2-7. In a second, inefficient event, a subset of CtGs transfer their Cdc45 and GINS components to form CMGs. Importantly, higher CtG multiplicity increases the frequency of CMG formation. Our findings reveal the molecular mechanisms sensitizing helicase activation to DDK levels with implications for control of replication origin efficiency and timing.


Asunto(s)
Replicación del ADN/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Origen de Réplica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
3.
Genes Dev ; 31(3): 291-305, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28270517

RESUMEN

Activation of the Mcm2-7 replicative DNA helicase is the committed step in eukaryotic DNA replication initiation. Although Mcm2-7 activation requires binding of the helicase-activating proteins Cdc45 and GINS (forming the CMG complex), an additional protein, Mcm10, drives initial origin DNA unwinding by an unknown mechanism. We show that Mcm10 binds a conserved motif located between the oligonucleotide/oligosaccharide fold (OB-fold) and A subdomain of Mcm2. Although buried in the interface between these domains in Mcm2-7 structures, mutations predicted to separate the domains and expose this motif restore growth to conditional-lethal MCM10 mutant cells. We found that, in addition to stimulating initial DNA unwinding, Mcm10 stabilizes Cdc45 and GINS association with Mcm2-7 and stimulates replication elongation in vivo and in vitro. Furthermore, we identified a lethal allele of MCM10 that stimulates initial DNA unwinding but is defective in replication elongation and CMG binding. Our findings expand the roles of Mcm10 during DNA replication and suggest a new model for Mcm10 function as an activator of the CMG complex throughout DNA replication.


Asunto(s)
Replicación del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Elongación de la Transcripción Genética , Secuencia de Aminoácidos , ADN Helicasas/química , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Origen de Réplica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
4.
PLoS Genet ; 13(1): e1006588, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28141805

RESUMEN

In budding yeast, activation of many DNA replication origins is regulated by their chromatin environment, whereas others fire in early S phase regardless of their chromosomal location. Several location-independent origins contain at least two divergently oriented binding sites for Forkhead (Fkh) transcription factors in close proximity to their ARS consensus sequence. To explore whether recruitment of Forkhead proteins to replication origins is dependent on the spatial arrangement of Fkh1/2 binding sites, we changed the spacing and orientation of the sites in early replication origins ARS305 and ARS607. We followed recruitment of the Fkh1 protein to origins by chromatin immunoprecipitation and tested the ability of these origins to fire in early S phase. Our results demonstrate that precise spatial and directional arrangement of Fkh1/2 sites is crucial for efficient binding of the Fkh1 protein and for early firing of the origins. We also show that recruitment of Fkh1 to the origins depends on formation of the pre-replicative complex (pre-RC) and loading of the Mcm2-7 helicase, indicating that the origins are regulated by cooperative action of Fkh1 and the pre-RC. These results reveal that DNA binding of Forkhead factors does not depend merely on the presence of its binding sites but on their precise arrangement and is strongly influenced by other protein complexes in the vicinity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factores de Transcripción Forkhead/metabolismo , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/genética , Unión Proteica , Fase S/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
5.
EMBO Rep ; 14(2): 191-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23222539

RESUMEN

To elucidate the role of the chromatin environment in the regulation of replication origin activation, autonomously replicating sequences were inserted into identical locations in the budding yeast genome and their activation times in S phase determined. Chromatin-dependent origins adopt to the firing time of the surrounding locus. In contrast, the origins containing two binding sites for Forkhead transcription factors are activated early in the S phase regardless of their location in the genome. Our results also show that genuinely late-replicating parts of the genome can be converted into early-replicating loci by insertion of a chromatin-independent early replication origin, ARS607, whereas insertion of two Forkhead-binding sites is not sufficient for conversion.


Asunto(s)
Cromatina/fisiología , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencia de Bases , ADN de Hongos/genética , ADN de Hongos/metabolismo , Cinética , Datos de Secuencia Molecular , Unión Proteica , Origen de Réplica , Fase S , Saccharomyces cerevisiae/metabolismo
6.
Int J Oncol ; 40(2): 567-76, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21947346

RESUMEN

CD43 (leukosialin, sialophorin), a cell surface protein on most hematopoietic cells, is an important regulator of immune cell function and is involved in regulation of cell adhesion and proliferation. Aberrant expression of CD43 is a common event observed in human tumors of non-hematopoietic origin suggesting a role in tumor development. We have previously shown that overexpression of CD43 causes activation of the ARF-p53 tumor-suppressor pathway and results in cell death. In a non-functional ARF-p53 background, the cells overexpressing CD43 display an increased cell growth rate due to higher survival. Here we show that p53 specifically downregulates the expression of CD43 at the protein and mRNA level. Transactivating properties of p53 are necessary to affect the expression of exogenous CD43. The downregulation of CD43 mRNA is caused by p53-dependent transrepression, at least in part, via a histone deacetylation mechanism. These studies establish that under certain conditions there exists a negative feedback loop between p53 and CD43: CD43-dependent signaling activates p53, which in turn downregulates the expression of CD43.


Asunto(s)
Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Leucocitos/metabolismo , Leucosialina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Retroalimentación Fisiológica , Genes Reporteros , Glicosilación , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Leucosialina/genética , Luciferasas/biosíntesis , Luciferasas/genética , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Estabilidad del ARN , Elementos de Respuesta , Transcripción Genética
7.
J Biol Chem ; 286(27): 23817-22, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21606489

RESUMEN

The intensity of gene transcription is generally reflected by the level of RNA polymerase II (RNAPII) recruitment to the gene. However, genome-wide studies of polymerase occupancy indicate that RNAPII distribution varies among genes. In some loci more polymerases are found in the 5' region, whereas in other loci, in the 3' region of the gene. We studied the distribution of elongating RNAPII complexes at highly transcribed GAL-VPS13 locus in Saccharomyces cerevisiae and found that in the cell population the amount of polymerases gradually decreased toward the 3' end of the gene. However, the conventional chromatin immunoprecipitation assay averages the signal from the cell population, and no data on single cell level can be gathered. To study the spacing of elongating polymerases on single chromosomes, we used a sequential chromatin immunoprecipitation assay for the detection of multiple RNAPII complexes on the same DNA fragment. Our results demonstrate uniform distribution of elongating polymerases throughout all regions of the GAL-VPS13 gene.


Asunto(s)
ADN de Hongos/metabolismo , Sitios Genéticos/fisiología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética/fisiología , ADN de Hongos/genética , Genes Fúngicos/fisiología , Kluyveromyces/enzimología , Kluyveromyces/genética , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
Biotechniques ; 50(5): 325-8, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21548894

RESUMEN

We have developed a quick and low-cost genomic DNA extraction protocol from yeast cells for PCR-based applications. This method does not require any enzymes, hazardous chemicals, or extreme temperatures, and is especially powerful for simultaneous analysis of a large number of samples. DNA can be efficiently extracted from different yeast species (Kluyveromyces lactis, Hansenula polymorpha, Schizosaccharomyces pombe, Candida albicans, Pichia pastoris, and Saccharomyces cerevisiae). The protocol involves lysis of yeast colonies or cells from liquid culture in a lithium acetate (LiOAc)-SDS solution and subsequent precipitation of DNA with ethanol. Approximately 100 nanograms of total genomic DNA can be extracted from 1 × 10(7) cells. DNA extracted by this method is suitable for a variety of PCR-based applications (including colony PCR, real-time qPCR, and DNA sequencing) for amplification of DNA fragments of ≤ 3500 bp.


Asunto(s)
Acetatos/análisis , Acetatos/química , ADN de Hongos/aislamiento & purificación , ADN de Hongos/metabolismo , Pichia/genética , Dodecil Sulfato de Sodio/análisis , Dodecil Sulfato de Sodio/química , Candida albicans/genética , Kluyveromyces/genética , Reacción en Cadena de la Polimerasa/métodos , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Levaduras/genética
9.
J Biol Chem ; 285(51): 40004-11, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20962350

RESUMEN

DNA replication origins are licensed in early G(1) phase of the cell cycle where the origin recognition complex (ORC) recruits the minichromosome maintenance (MCM) helicase to origins. These pre-replicative complexes (pre-RCs) remain inactive until replication is initiated in the S phase. However, transcriptional activity in the regions of origins can eliminate their functionality by displacing the components of pre-RC from DNA. We analyzed genome-wide data of mRNA and cryptic unstable transcripts in the context of locations of replication origins in yeast genome and found that at least one-third of the origins are transcribed and therefore might be inactivated by transcription. When investigating the fate of transcriptionally inactivated origins, we found that replication origins were repetitively licensed in G(1) to reestablish their functionality after transcription. We propose that reloading of pre-RC components in G(1) might be utilized for the maintenance of sufficient number of competent origins for efficient initiation of DNA replication in S phase.


Asunto(s)
Replicación del ADN/fisiología , ADN de Hongos/biosíntesis , Origen de Réplica/fisiología , Saccharomyces cerevisiae/metabolismo , Transcripción Genética/fisiología , ADN Helicasas , ADN de Hongos/genética , Fase G1/fisiología , Fase S/fisiología , Saccharomyces cerevisiae/genética
10.
Mol Cell Biol ; 30(6): 1467-77, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20065036

RESUMEN

In Saccharomyces cerevisiae SIR proteins mediate transcriptional silencing, forming heterochromatin structures at repressed loci. Although recruitment of transcription initiation factors can occur even to promoters packed in heterochromatin, it is unclear whether heterochromatin inhibits RNA polymerase II (RNAPII) transcript elongation. To clarify this issue, we recruited SIR proteins to the coding region of an inducible gene and characterized the effects of the heterochromatic structure on transcription. Surprisingly, RNAPII is fully competent for transcription initiation and elongation at the locus, leading to significant loss of heterochromatin proteins from the region. A search for auxiliary factors required for transcript elongation through the heterochromatic locus revealed that two proteins involved in histone H3 lysine 56 acetylation, Rtt109 and Asf1, are needed for efficient transcript elongation by RNAPII. The efficiency of transcription through heterochromatin is also impaired in a strain carrying the K56R mutation in histone H3. Our results show that H3 K56 modification is required for efficient transcription of heterochromatic locus by RNAPII, and we propose that transcription-coupled incorporation of H3 acetylated K56 (acK56) into chromatin is needed for efficient opening of heterochromatic loci for transcription.


Asunto(s)
Heterocromatina/metabolismo , Histonas/metabolismo , Lisina/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Acetilación , Fase G1 , Genes Fúngicos/genética , Sitios Genéticos/genética , Nucleosomas/metabolismo , Sistemas de Lectura Abierta , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...