Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 7(1): 368-378, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28070299

RESUMEN

The extensive spatial and temporal coverage of many citizen science datasets (CSD) makes them appealing for use in species distribution modeling and forecasting. However, a frequent limitation is the inability to validate results. Here, we aim to assess the reliability of CSD for forecasting species occurrence in response to national forest management projections (representing 160,366 km2) by comparison against forecasts from a model based on systematically collected colonization-extinction data. We fitted species distribution models using citizen science observations of an old-forest indicator fungus Phellinus ferrugineofuscus. We applied five modeling approaches (generalized linear model, Poisson process model, Bayesian occupancy model, and two MaxEnt models). Models were used to forecast changes in occurrence in response to national forest management for 2020-2110. Forecasts of species occurrence from models based on CSD were congruent with forecasts made using the colonization-extinction model based on systematically collected data, although different modeling methods indicated different levels of change. All models projected increased occurrence in set-aside forest from 2020 to 2110: the projected increase varied between 125% and 195% among models based on CSD, in comparison with an increase of 129% according to the colonization-extinction model. All but one model based on CSD projected a decline in production forest, which varied between 11% and 49%, compared to a decline of 41% using the colonization-extinction model. All models thus highlighted the importance of protected old forest for P. ferrugineofuscus persistence. We conclude that models based on CSD can reproduce forecasts from models based on systematically collected colonization-extinction data and so lead to the same forest management conclusions. Our results show that the use of a suite of models allows CSD to be reliably applied to land management and conservation decision making, demonstrating that widely available CSD can be a valuable forecasting resource.

2.
Oecologia ; 161(3): 569-79, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19579035

RESUMEN

Host trees for obligate epiphytes are dynamic patches that emerge, grow and fall, and metacommunity diversity critically depends on efficient dispersal. Even though species that disperse by large asexual diaspores are strongly dispersal limited, asexual dispersal is common. The stronger dispersal limitation of asexually reproducing species compared to species reproducing sexually via small spores may be compensated by higher growth rates, lower sensitivity to habitat conditions, higher competitive ability or younger reproductive age. We compared growth and reproduction of different groups of epiphytic bryophytes with contrasting dispersal (asexual vs. sexual) and life history strategies (colonists, short- and long-lived shuttle species, perennial stayers) in an old-growth forest stand in the boreo-nemoral region in eastern Sweden. No differences were seen in relative growth rates between asexual and sexual species. Long-lived shuttles had lower growth rates than colonists and perennial stayers. Most groups grew best at intermediate bark pH. Interactions with other epiphytes had a small, often positive effect on growth. Neither differences in sensitivity of growth to habitat conditions nor differences in competitive abilities among species groups were found. Habitat conditions, however, influenced the production of sporophytes, but not of asexual diaspores. Presence of sporophytes negatively affected growth, whereas presence of asexual diaspores did not. Sexual species had to reach a certain colony size before starting to reproduce, whereas no such threshold existed for asexual reproduction. The results indicate that the epiphyte metacommunity is structured by two main trade-offs: dispersal distance vs. reproductive age, and dispersal distance vs. sensitivity to habitat quality. There seems to be a trade-off between growth and sexual reproduction, but not asexual. Trade-offs in species traits may be shaped by conflicting selection pressures imposed by habitat turnover and connectivity rather than by species interactions.


Asunto(s)
Briófitas/crecimiento & desarrollo , Ecosistema , Simbiosis , Árboles/fisiología , Demografía , Funciones de Verosimilitud , Modelos Lineales , Dinámica Poblacional , Reproducción/fisiología , Especificidad de la Especie , Suecia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA