Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res B Appl Biomater ; 102(4): 826-39, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24259480

RESUMEN

For dental implants, improved osseointegration is obtained by modifying the surface roughness as well as oxide morphology and composition. A combination of different effects contributes to enhanced performance, but with surface roughness as the dominant factor. To single out the effect of oxide conductivity on biological response, oxide films with similar thickness and surface roughness but different electronic properties were formed using galvanostatic anodization. Three different current densities were used, 2.4, 4.8, and 11.9 mA cm(-2) , which resulted in growth rates ranging from 0.2 to 2.5 V s(-1) . The electronic properties were evaluated using cyclic voltammetry and impedance spectroscopy, while the biological response was studied by cell activity and apatite formation. The number of charge carrier in the oxide film close to the oxide/solution interface decreased from 5.8 × 10(-19) to 3.2 × 10(-19) cm(-2) with increasing growth rate, that is, the conductivity decreased correspondingly. Cell response of the different surfaces was tested in vitro using human osteoblast-like cells (MG-63). The results clearly show decreased osteoblast proliferation and adhesion but higher mineralization activity for the oxide with lower conductivity at the oxide/solution interface. The apatite-forming ability was examined by immersion in simulated body fluid. At short times the apatite coverage was ∼26% for the anodized surfaces, significantly larger than for the reference with only 3% coverage. After 1 week of immersion the apatite coverage ranged from 73 to 56% and a slight differentiation between the anodized surfaces was obtained with less apatite formation on the surface with lower conductivity, in line with the cell culture results.


Asunto(s)
Conductividad Eléctrica , Electrodos , Titanio , Apatitas/metabolismo , Materiales Biocompatibles , Adhesión Celular , División Celular , Línea Celular , Espectroscopía Dieléctrica , Humanos , Técnicas In Vitro , Ensayo de Materiales , Osteoblastos/citología , Osteoblastos/metabolismo , Espectroscopía de Fotoelectrones , Soluciones , Propiedades de Superficie , Difracción de Rayos X
2.
Int J Dent ; 2013: 139615, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23737786

RESUMEN

Nanoparticle-covered electrodes have altered properties as compared to conventional electrodes with same chemical composition. The changes originate from the large surface area and enhanced conduction. To test the mineralization capacity of such materials, TiO2 nanoparticles were deposited on titanium and gold substrates. The electrochemical properties were investigated using cyclic voltammetry and impedance spectroscopy while the mineralization was tested by immersion in simulated body fluid. Two types of nucleation and growth behaviours were observed. For smooth nanoparticle surfaces, the initial nucleation is fast with the formation of few small nuclei of hydroxyapatite. With time, an amorphous 2D film develops with a Ca/P ratio close to 1.5. For the rougher surfaces, the nucleation is delayed but once it starts, thick layers are formed. Also the electronic properties of the oxides were shown to be important. Both density of states (DOS) in the bandgap of TiO2 and the active area were determined. The maximum in DOS was found to correlate with the donor density (N d ) and the active surface area. The results clearly show that a rough surface with high conductivity is beneficial for formation of thick apatite layers, while the nanoparticle covered electrodes show early nucleation but limited apatite formation.

3.
J Biomech ; 44(6): 1059-65, 2011 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-21354573

RESUMEN

The osseointegration of titanium dental implants is a complex process and there is a need for systematization of the factors influencing anchoring of implant. A common way of analyzing the strength of the fixation in bone is by measuring the torque required to remove the implants after healing. In this paper, a global biomechanical model is introduced and derived for removal torque situations. In this model, a gap is allowed to form between the bone and the implant and the size of the gap at fracture is a function of the surface roughness and can be shown to be directly related to the mean slope of the surface. The interfacial shear strength increases almost linearly with the mean slope and was also found to increase with an increase in the 2D surface roughness parameter, R(a). Besides the surface roughness, the design of the implant, the bone anatomy and the bone quality were shown to influence the interfacial shear strength. The Global biomechanical model can be used as a tool for optimizing the implant design and the surface topography to obtain high anchoring strength.


Asunto(s)
Implantes Dentales , Diseño de Prótesis Dental/métodos , Modelos Biológicos , Fenómenos Biomecánicos , Humanos
4.
Biomaterials ; 30(27): 4471-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19524291

RESUMEN

The properties of the TiO2 layer on titanium implant surfaces are decisive for good contact with the surrounding tissue. The oxide properties can be deliberately changed by for example chemical etching, ion incorporation or anodisation. In the present study impedance spectroscopy was used to study the semi-conducting properties of the naturally formed oxide for different pre-treatment of the surface. A turned surface was used as a reference and both physical (blasting) and chemical (hydrofluoric acid etching) treatments were investigated. Blasting of a titanium sample introduces defects in the metal surface and the study clearly shows that also the oxide layer contains defects leading to a higher number of charge carriers (increased conductivity) compared with the oxide on the turned surface. The hydrofluoric acid etching of the blasted surface results in an oxide film with even higher conductivity. Indication of the defect oxide structure for fluoride treated samples was also seen when analysing the TiO+/Ti+ ratio from ToF-SIMS data. The lowest value of this ratio was obtained for the HF etched sample, indicating a less stoichiometric oxide compared to the other surfaces. This is a result of incorporation of fluoride ions in the oxide, as proven by adsorption studies on a TiO2 suspension. The results were treated in the context of surface complexation and two surface complexes were identified. Our results are discussed in relation to pull-out data on rabbit. The pull-out forces depend primarily on surface roughness but the contribution from the hydrofluoric acid etching might be explained by fluoride ion incorporation and the resulting increase in oxide conductivity.


Asunto(s)
Ensayo de Materiales , Prótesis e Implantes , Semiconductores , Titanio/química , Adsorción , Animales , Implantes Dentales , Fluoruros/química , Concentración de Iones de Hidrógeno , Hidroxilación , Iones , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Potenciometría , Conejos , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA