Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 9(38): 33327-33332, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28863260

RESUMEN

The self-assembly and interfacial jamming of spherical Janus nanoparticles (JNPs) at the water/oil interface were investigated. Polymeric JNPs, made by cross-linking polystyrene-block-polybutadiene-block-poly(methyl methacrylate) (PS-PB-PMMA), with a high interfacial activity assemble at the water/oil interface. During the self-assembly at the interface, the interfacial energy was reduced and a dynamic interlayer was observed that is responsive to the pH of the aqueous phase. Unlike hard particles, the JNPs are composed of polymer chains that can spread at the liquid-liquid interface to maximize coverage at relatively low areal densities. In a pendant drop geometry, the interfacial area of a water droplet in oil was significantly decreased and the JNPs were forced to pack more closely. Entangling of the polymer chains causes the JNPs to form a solid-like interfacial assembly, resulting in the formation of wrinkles when the interfacial area is decreased. The wrinkling behavior, the retention of the wrinkles, or the slow relaxation of the liquid drop back to its original equilibrium shape was found to depend upon the pH.

2.
Nat Commun ; 7: 12097, 2016 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-27352897

RESUMEN

Block copolymers self-assemble into a variety of nanostructures that are relevant for science and technology. While the assembly of diblock copolymers is largely understood, predicting the solution assembly of triblock terpolymers remains challenging due to complex interplay of block/block and block/solvent interactions. Here we provide guidelines for the self-assembly of linear ABC triblock terpolymers into a large variety of multicompartment nanostructures with C corona and A/B cores. The ratio of block lengths NC/NA thereby controls micelle geometry to spheres, cylinders, bilayer sheets and vesicles. The insoluble blocks then microphase separate to core A and surface patch B, where NB controls the patch morphology to spherical, cylindrical, bicontinuous and lamellar. The independent control over both parameters allows constructing combinatorial libraries of unprecedented solution nanostructures, including spheres-on-cylinders/sheets/vesicles, cylinders-on-sheets/vesicles, and sheets/vesicles with bicontinuous or lamellar membrane morphology (patchy polymersomes). The derived parameters provide a logical toolbox towards complex self-assemblies for soft matter nanotechnologies.

3.
Macromol Rapid Commun ; 37(3): 215-20, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26637124

RESUMEN

Gold nanoparticles (AuNP) with pyridyl end-capped polystyrenes (PS-4VP) as "quasi-monodentate" ligands self-assemble into ordered PS-4VP/AuNP nanostructures with 3D hexagonal spatial order in the dried solid state. The key for the formation of these ordered structures is the modulation of the ratio AuNP versus ligands, which proves the importance of ligand design and quantity for the preparation of novel ordered polymer/metal nanoparticle conjugates. Although the assemblies of PS-4VP/AuNP in dispersion lack in high dimensional order, strong plasmonic interactions are observed due to close contact of AuNP. Applying temperature as an external stimulus allows the reversible distortion of plasmonic interactions within the AuNP nanocomposite structures, which can be observed directly by naked eye. The modulation of the macroscopic optical properties accompanied by this structural distortion of plasmonic interaction opens up very interesting sensoric applications.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Polímeros/química , Espectrofotometría Ultravioleta , Temperatura
4.
ACS Macro Lett ; 5(9): 1044-1048, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35614643

RESUMEN

The solution self-assembly of amphiphilic diblock copolymers into spheres, cylinders, and vesicles (polymersomes) has been intensely studied over the past two decades, and their morphological behavior is well understood. Linear ABC triblock terpolymers with two insoluble blocks A/B, on the other hand, display a richer and more complex morphological spectrum that has been recently explored by synthetic block length variations. Here, we describe facile postpolymerization routes to tailor ABC triblock terpolymer solution morphologies by altering block solubility (solvent mixtures), blending with homopolymers, and block-selective chemical reactions. The feasibility of these processes is demonstrated on polystyrene-block-polybutadiene-block-poly(methyl methacrylate) (SBM) that assembles to patchy spherical micelles, which can be modified to evolve into double and triple helices or patchy and striped vesicles. These results demonstrate that postpolymerization treatments give access to a broad range of morphologies from single triblock terpolymers without the need for multiple polymer syntheses.

5.
ACS Macro Lett ; 5(10): 1185-1190, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-35658182

RESUMEN

The behavior of nanoparticles in solution is largely dominated by their shape and interaction potential. Despite considerable progress in the preparation of patchy and compartmentalized particles, access to nanoparticles with complex surface patterns and topographies remains limited. Here, we show that polyanionic brushes tethered to rod-like cellulose nanocrystals (CNCs) spontaneously develop a striped or helical topography through interpolyelectrolyte complexation with polycationic diblock copolymers. Using cryogenic transmission electron microscopy (cryo-TEM) and tomography (cryo-ET), we follow the complexation process and analyze the delicate 3D topography on the CNC surface. The described approach is facile and modular and can be extended to other block chemistries, nanoparticles, and surfaces, thereby providing a versatile platform toward surface-patterned particles with complex topographies and spatially arranged functional groups.

6.
ACS Nano ; 8(10): 10048-56, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25211536

RESUMEN

Several hundred grams of Janus nanoparticles (d ≈ 40 nm) were synthesized from triblock terpolymers as compatibilizers for blending of technologically relevant polymers, PPE and SAN, on industry-scale extruders. The Janus nanoparticles (JPs) demonstrate superior compatibilization capabilities compared to the corresponding triblock terpolymer, attributed to the combined intrinsic properties, amphiphilicity and the Pickering effect. Straightforward mixing and extrusion protocols yield multiscale blend morphologies with "raspberry-like" structures of JPs-covered PPE phases in a SAN matrix. The JPs densely pack at the blend interface providing the necessary steric repulsion to suppress droplet coagulation during processing. We determine the efficiency of JP-compatibilization by droplet size evaluation and find the smallest average droplet size of d ≈ 300 nm at 10 wt % of added compatibilizer, whereas at 2 wt %, use of JPs is most economic with reasonable small droplets and narrow dispersity. In case of excess JPs, rheological properties of the system is changed by a droplet network formation. The large-scale synthesis of JPs, the low required weight fractions and their exceptional stability against extensive shear and temperature profiles during industrial extrusion process make JP promising next generation compatibilizers.

7.
ACS Nano ; 8(11): 11330-40, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25195820

RESUMEN

The demand for ever more complex nanostructures in materials and soft matter nanoscience also requires sophisticated characterization tools for reliable visualization and interpretation of internal morphological features. Here, we address both aspects and present synthetic concepts for the compartmentalization of nanoparticle peripheries as well as their in situ tomographic characterization. We first form negatively charged spherical multicompartment micelles from ampholytic triblock terpolymers in aqueous media, followed by interpolyelectrolyte complex (IPEC) formation of the anionic corona with bis-hydrophilic cationic/neutral diblock copolymers. At a 1:1 stoichiometric ratio of anionic and cationic charges, the so-formed IPECs are charge neutral and thus phase separate from solution (water). The high chain density of the ionic grafts provides steric stabilization through the neutral PEO corona of the grafted diblock copolymer and suppresses collapse of the IPEC; instead, the dense grafting results in defined nanodomains oriented perpendicular to the micellar core. We analyze the 3D arrangements of the complex and purely organic compartments, in situ, by means of cryogenic transmission electron microscopy (cryo-TEM) and tomography (cryo-ET). We study the effect of block lengths of the cationic and nonionic block on IPEC morphology, and while 2D cryo-TEM projections suggest similar morphologies, cryo-ET and computational 3D reconstruction reveal otherwise hidden structural features, e.g., planar IPEC brushes emanating from the micellar core.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Micelas , Cromatografía en Gel , Polímeros/química , Espectroscopía de Protones por Resonancia Magnética
8.
Nature ; 503(7475): 247-51, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24185010

RESUMEN

The concept of hierarchical bottom-up structuring commonly encountered in natural materials provides inspiration for the design of complex artificial materials with advanced functionalities. Natural processes have achieved the orchestration of multicomponent systems across many length scales with very high precision, but man-made self-assemblies still face obstacles in realizing well-defined hierarchical structures. In particle-based self-assembly, the challenge is to program symmetries and periodicities of superstructures by providing monodisperse building blocks with suitable shape anisotropy or anisotropic interaction patterns ('patches'). Irregularities in particle architecture are intolerable because they generate defects that amplify throughout the hierarchical levels. For patchy microscopic hard colloids, this challenge has been approached by using top-down methods (such as metal shading or microcontact printing), enabling molecule-like directionality during aggregation. However, both top-down procedures and particulate systems based on molecular assembly struggle to fabricate patchy particles controllably in the desired size regime (10-100 nm). Here we introduce the co-assembly of dynamic patchy nanoparticles--that is, soft patchy nanoparticles that are intrinsically self-assembled and monodisperse--as a modular approach for producing well-ordered binary and ternary supracolloidal hierarchical assemblies. We bridge up to three hierarchical levels by guiding triblock terpolymers (length scale ∼10 nm) to form soft patchy nanoparticles (20-50 nm) of different symmetries that, in combination, co-assemble into substructured, compartmentalized materials (>10 µm) with predictable and tunable nanoscale periodicities. We establish how molecular control over polymer composition programs the building block symmetries and regulates particle positioning, offering a route to well-ordered mixed mesostructures of high complexity.

10.
J Am Chem Soc ; 134(33): 13850-60, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22834562

RESUMEN

We present a novel, versatile, and simple solution-based routine to produce soft, nanosized Janus particles with tunable structural and physical properties at high volume yield. This process is based on the cross-linking of compartments within precisely defined multicompartment micelles (MCMs), which are themselves formed by the self-assembly of ABC triblock terpolymers. Therein, the C blocks form the stabilizing corona emanating from B compartments, which in turn reside on an A core. Cross-linking of the B compartments allows to permanently fixate the phase-separated state and dissolution in a good solvent for all blocks breaks up the MCMs into single Janus particles. They now consist of a core of cross-linked B blocks and two phase-separated hemispheres of A and C. The process gives access to unprecedented structural features such as tunable core diameter and control over the Janus balance ranging from dominant A side to equal hemispheres to dominant C side. We demonstrate that this simple one-pot approach can be extended to a range of triblock terpolymers with different block lengths and block chemistries to furnish a library of tailor-made Janus particles with widely tunable physical properties. Such a diversity and simplicity has remained unreachable with our previously developed approach using the controlled cross-linking of bulk morphologies. We show that this new synthetic route can be upscaled to a high volume yield of 10 wt %, thereby enabling large-scale applications. We further demonstrate the effect of the Janus balance on colloidal self-assembly. Janus particles with a dominant hydrophobic and a small hydrophilic patch aggregate into large clusters in water, but merely di- or trimerize in chloroform.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...