Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 6(17): 5198-5209, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36069828

RESUMEN

Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is critically involved in hemostasis. Biosynthesis of long VWF concatemers in the endoplasmic reticulum and the trans-Golgi is still not fully understood. We use the single-molecule force spectroscopy technique magnetic tweezers to analyze a previously hypothesized conformational change in the D'D3 domain crucial for VWF multimerization. We find that the interface formed by submodules C8-3, TIL3, and E3 wrapping around VWD3 can open and expose 2 buried cysteines, Cys1099 and Cys1142, that are vital for multimerization. By characterizing the conformational change at varying levels of force, we can quantify the kinetics of the transition and stability of the interface. We find a pronounced destabilization of the interface on lowering the pH from 7.4 to 6.2 and 5.5. This is consistent with initiation of the conformational change that enables VWF multimerization at the D'D3 domain by a decrease in pH in the trans-Golgi network and Weibel-Palade bodies. Furthermore, we find a stabilization of the interface in the presence of coagulation factor VIII, providing evidence for a previously hypothesized binding site in submodule C8-3. Our findings highlight the critical role of the D'D3 domain in VWF biosynthesis and function, and we anticipate our methodology to be applicable to study other, similar conformational changes in VWF and beyond.


Asunto(s)
Aparato de Golgi , Factor de von Willebrand , Sitios de Unión , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Dominios Proteicos , Factor de von Willebrand/metabolismo
3.
Nat Commun ; 11(1): 5778, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188196

RESUMEN

Breakdown of vascular barriers is a major complication of inflammatory diseases. Anucleate platelets form blood-clots during thrombosis, but also play a crucial role in inflammation. While spatio-temporal dynamics of clot formation are well characterized, the cell-biological mechanisms of platelet recruitment to inflammatory micro-environments remain incompletely understood. Here we identify Arp2/3-dependent lamellipodia formation as a prominent morphological feature of immune-responsive platelets. Platelets use lamellipodia to scan for fibrin(ogen) deposited on the inflamed vasculature and to directionally spread, to polarize and to govern haptotactic migration along gradients of the adhesive ligand. Platelet-specific abrogation of Arp2/3 interferes with haptotactic repositioning of platelets to microlesions, thus impairing vascular sealing and provoking inflammatory microbleeding. During infection, haptotaxis promotes capture of bacteria and prevents hematogenic dissemination, rendering platelets gate-keepers of the inflamed microvasculature. Consequently, these findings identify haptotaxis as a key effector function of immune-responsive platelets.


Asunto(s)
Plaquetas/patología , Vasos Sanguíneos/patología , Quimiotaxis , Inflamación/patología , Neumonía/sangre , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Adulto , Animales , Movimiento Celular , Microambiente Celular , Modelos Animales de Enfermedad , Fibrinógeno/metabolismo , Humanos , Lipopolisacáridos , Lesión Pulmonar/microbiología , Lesión Pulmonar/patología , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones Endogámicos C57BL , Microvasos/patología , Neumonía/microbiología , Seudópodos/metabolismo
4.
Nanoscale ; 12(41): 21131-21137, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33079117

RESUMEN

The small molecule biotin and the homotetrameric protein streptavidin (SA) form a stable and robust complex that plays a pivotal role in many biotechnological and medical applications. In particular, the SA-biotin linkage is frequently used in single-molecule force spectroscopy (SMFS) experiments. Recent data suggest that SA-biotin bonds show strong directional dependence and a broad range of multi-exponential lifetimes under load. Here, we investigate engineered SA variants with different valencies and a unique tethering point under constant forces using a magnetic tweezers assay. We observed orders-of-magnitude differences in the lifetimes under force, which we attribute to the distinct force-loading geometries in the different SA variants. Lifetimes showed exponential dependencies on force, with extrapolated lifetimes at zero force that are similar for the different SA variants and agree with parameters determined from constant-speed dynamic SMFS experiments. We identified an especially long-lived tethering geometry that will facilitate ultra-stable SMFS experiments.


Asunto(s)
Biotina , Imagen Individual de Molécula , Fenómenos Mecánicos , Microscopía de Fuerza Atómica , Estreptavidina
5.
Proc Natl Acad Sci U S A ; 116(38): 18798-18807, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31462494

RESUMEN

Single-molecule force spectroscopy has provided unprecedented insights into protein folding, force regulation, and function. So far, the field has relied primarily on atomic force microscope and optical tweezers assays that, while powerful, are limited in force resolution, throughput, and require feedback for constant force measurements. Here, we present a modular approach based on magnetic tweezers (MT) for highly multiplexed protein force spectroscopy. Our approach uses elastin-like polypeptide linkers for the specific attachment of proteins, requiring only short peptide tags on the protein of interest. The assay extends protein force spectroscopy into the low force (<1 pN) regime and enables parallel and ultra-stable measurements at constant forces. We present unfolding and refolding data for the small, single-domain protein ddFLN4, commonly used as a molecular fingerprint in force spectroscopy, and for the large, multidomain dimeric protein von Willebrand factor (VWF) that is critically involved in primary hemostasis. For both proteins, our measurements reveal exponential force dependencies of unfolding and refolding rates. We directly resolve the stabilization of the VWF A2 domain by Ca2+ and discover transitions in the VWF C domain stem at low forces that likely constitute the first steps of VWF's mechano-activation. Probing the force-dependent lifetime of biotin-streptavidin bonds, we find that monovalent streptavidin constructs with specific attachment geometry are significantly more force stable than commercial, multivalent streptavidin. We expect our modular approach to enable multiplexed force-spectroscopy measurements for a wide range of proteins, in particular in the physiologically relevant low-force regime.


Asunto(s)
Pliegue de Proteína , Factor de von Willebrand/química , Aminoácidos , Calcio/metabolismo , Reactivos de Enlaces Cruzados/química , Elastina/química , Magnetismo , Fenómenos Mecánicos , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Imagen Individual de Molécula
6.
PLoS One ; 14(1): e0210963, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30645640

RESUMEN

The formation of hemostatic plugs at sites of vascular injury crucially involves the multimeric glycoprotein von Willebrand factor (VWF). VWF multimers are linear chains of N-terminally linked dimers. The latter are formed from monomers via formation of the C-terminal disulfide bonds Cys2771-Cys2773', Cys2773-Cys2771', and Cys2811-Cys2811'. Mutations in VWF that impair multimerization can lead to subtype 2A of the bleeding disorder von Willebrand Disease (VWD). Commonly, the multimer size distribution of VWF is assessed by electrophoretic multimer analysis. Here, we present atomic force microscopy (AFM) imaging as a method to determine the size distribution of VWF variants by direct visualization at the single-molecule level. We first validated our approach by investigating recombinant wildtype VWF and a previously studied mutant (p.Cys1099Tyr) that impairs N-terminal multimerization. We obtained excellent quantitative agreement with results from earlier studies and with electrophoretic multimer analysis. We then imaged specific mutants that are known to exhibit disturbed C-terminal dimerization. For the mutants p.Cys2771Arg and p.Cys2773Arg, we found the majority of monomers (87 ± 5% and 73 ± 4%, respectively) not to be C-terminally dimerized. While these results confirm that Cys2771 and Cys2773 are crucial for dimerization, they additionally provide quantitative information on the mutants' different abilities to form alternative C-terminal disulfides for residual dimerization. We further mutated Cys2811 to Ala and found that only 23 ± 3% of monomers are not C-terminally dimerized, indicating that Cys2811 is structurally less important for dimerization. Furthermore, for mutants p.Cys2771Arg, p.Cys2773Arg, and p.Cys2811Ala we found 'even-numbered' non-native multimers, i.e. multimers with monomers attached on both termini; a multimer species that cannot be distinguished from native multimers by conventional multimer analysis. Summarizing, we demonstrate that AFM imaging can provide unique insights into VWF processing defects at the single-molecule level that cannot be gained from established methods of multimer analysis.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Imagen Individual de Molécula/métodos , Factor de von Willebrand/química , Factor de von Willebrand/ultraestructura , Sustitución de Aminoácidos , Cisteína/química , Dimerización , Células HEK293 , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestructura , Mutación Missense , Tamaño de la Partícula , Multimerización de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestructura , Enfermedades de von Willebrand/sangre , Enfermedades de von Willebrand/genética , Factor de von Willebrand/genética
7.
J Cell Physiol ; 233(2): 799-810, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28256724

RESUMEN

The process of hemostatic plug formation at sites of vascular injury crucially relies on the large multimeric plasma glycoprotein von Willebrand factor (VWF) and its ability to recruit platelets to the damaged vessel wall via interaction of its A1 domain with platelet GPIbα. Under normal blood flow conditions, VWF multimers exhibit a very low binding affinity for platelets. Only when subjected to increased hydrodynamic forces, which primarily occur in connection with vascular injury, VWF can efficiently bind to platelets. This force-regulation of VWF's hemostatic activity is not only highly intriguing from a biophysical perspective, but also of eminent physiological importance. On the one hand, it prevents undesired activity of VWF in intact vessels that could lead to thromboembolic complications and on the other hand, it enables efficient VWF-mediated platelet aggregation exactly where needed. Here, we review recent studies that mainly employed biophysical approaches in order to elucidate the molecular mechanisms underlying the complex mechano-regulation of the VWF-GPIbα interaction. Their results led to two main hypotheses: first, intramolecular shielding of the A1 domain is lifted upon force-induced elongation of VWF; second, force-induced conformational changes of A1 convert it from a low-affinity to a high-affinity state. We critically discuss these hypotheses and aim at bridging the gap between the large-scale behavior of VWF as a linear polymer in hydrodynamic flow and the detailed properties of the A1-GPIbα bond at the single-molecule level.


Asunto(s)
Plaquetas/metabolismo , Hemostasis , Mecanotransducción Celular , Activación Plaquetaria , Factor de von Willebrand/metabolismo , Animales , Humanos , Hidrodinámica , Agregación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria/química , Complejo GPIb-IX de Glicoproteína Plaquetaria/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Factor de von Willebrand/química
8.
Nano Lett ; 17(12): 7710-7716, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29188711

RESUMEN

Carbon dots (CDs) are an intriguing fluorescent material; however, due to a plethora of synthesis techniques and precursor materials, there is still significant debate on their structure and the origin of their optical properties. The two most prevalent mechanisms to explain them are based on polycyclic aromatic hydrocarbon domains and small molecular fluorophores, for instance, citrazinic acid. Yet, how these form and whether they can exist simultaneously is still under study. To address this, we vary the hydrothermal synthesis time of CDs obtained from citric acid and ethylenediamine and show that in the initial phase molecular fluorophores, likely 2-pyridone derivatives, account for the blue luminescence of the dots. However, over time, while the overall size of the CDs does not change, aromatic domains form and grow, resulting in a second, faster decay channel at similar wavelengths and also creating additional lower energetic states. Electrophoresis provides further evidence that the ensemble of CDs consists of several subsets with different internal structure and surface charge. The understanding of the formation mechanism enables a control of the chemical origin of these emitters and the ensuing optical properties of the CDs through synthetic means.

9.
Adv Biol Regul ; 63: 81-91, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27717713

RESUMEN

The large multimeric plasma glycoprotein von Willebrand factor (VWF) is essential for primary hemostasis by recruiting platelets to sites of vascular injury. VWF multimers respond to elevated hydrodynamic forces by elongation, thereby increasing their adhesiveness to platelets. Thus, the activation of VWF is force-induced, as is its inactivation. Due to these attributes, VWF is a highly interesting system from a biophysical point of view, and is well suited for investigation using biophysical approaches. Here, we give an overview on recent studies that predominantly employed biophysical methods to gain novel insights into multiple aspects of VWF: Electron microscopy was used to shed light on the domain structure of VWF and the mechanism of VWF secretion. High-resolution stochastic optical reconstruction microscopy, atomic force microscopy (AFM), microscale thermophoresis and fluorescence correlation spectroscopy allowed identification of protein disulfide isomerase isoform A1 as the VWF dimerizing enzyme and, together with molecular dynamics simulations, postulation of the dimerization mechanism. Advanced mass spectrometry led to detailed identification of the glycan structures carried by VWF. Microfluidics was used to illustrate the interplay of force and VWF function. Results from optical tweezers measurements explained mechanisms of the force-dependent functions of VWF's domains A1 and A2 and, together with thermodynamic approaches, increased our understanding of mutation-induced dysfunctions of platelet-binding. AFM-based force measurements and AFM imaging enabled exploration of intermonomer interactions and their dependence on pH and divalent cations. These advances would not have been possible by the use of biochemical methods alone and show the benefit of interdisciplinary research approaches.


Asunto(s)
Plaquetas/fisiología , Hemostasis/fisiología , Procolágeno-Prolina Dioxigenasa/genética , Proteína Disulfuro Isomerasas/genética , Factor de von Willebrand/química , Secuencia de Aminoácidos , Fenómenos Biomecánicos , Plaquetas/citología , Expresión Génica , Humanos , Hidrodinámica , Técnicas Analíticas Microfluídicas , Microscopía de Fuerza Atómica , Microscopía Electrónica , Simulación de Dinámica Molecular , Pinzas Ópticas , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Dominios Proteicos , Multimerización de Proteína , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
10.
Biophys J ; 111(2): 312-322, 2016 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-27463134

RESUMEN

Von Willebrand factor (VWF) is a multimeric plasma glycoprotein that is activated for hemostasis by increased hydrodynamic forces at sites of vascular injury. Here, we present data from atomic force microscopy-based single-molecule force measurements, atomic force microscopy imaging, and small-angle x-ray scattering to show that the structure and mechanics of VWF are governed by multiple pH-dependent interactions with opposite trends within dimeric subunits. In particular, the recently discovered strong intermonomer interaction, which induces a firmly closed conformation of dimers and crucially involves the D4 domain, was observed with highest frequency at pH 7.4, but was essentially absent at pH values below 6.8. However, below pH 6.8, the ratio of compact dimers increased with decreasing pH, in line with a previous transmission electron microscopy study. These findings indicated that the compactness of dimers at pH values below 6.8 is promoted by other interactions that possess low mechanical resistance compared with the strong intermonomer interaction. By investigating deletion constructs, we found that compactness under acidic conditions is primarily mediated by the D4 domain, i.e., remarkably by the same domain that also mediates the strong intermonomer interaction. As our data suggest that VWF has the highest mechanical resistance at physiological pH, local deviations from physiological pH (e.g., at sites of vascular injury) may represent a means to enhance VWF's hemostatic activity where needed.


Asunto(s)
Fenómenos Mecánicos , Multimerización de Proteína , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo , Secuencia de Aminoácidos , Fenómenos Biomecánicos , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Imidazoles/farmacología , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína
11.
Proc Natl Acad Sci U S A ; 113(5): 1208-13, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26787887

RESUMEN

The large plasma glycoprotein von Willebrand factor (VWF) senses hydrodynamic forces in the bloodstream and responds to elevated forces with abrupt elongation, thereby increasing its adhesiveness to platelets and collagen. Remarkably, forces on VWF are elevated at sites of vascular injury, where VWF's hemostatic potential is important to mediate platelet aggregation and to recruit platelets to the subendothelial layer. Adversely, elevated forces in stenosed vessels lead to an increased risk of VWF-mediated thrombosis. To dissect the remarkable force-sensing ability of VWF, we have performed atomic force microscopy (AFM)-based single-molecule force measurements on dimers, the smallest repeating subunits of VWF multimers. We have identified a strong intermonomer interaction that involves the D4 domain and critically depends on the presence of divalent ions, consistent with results from small-angle X-ray scattering (SAXS). Dissociation of this strong interaction occurred at forces above [Formula: see text]50 pN and provided [Formula: see text]80 nm of additional length to the elongation of dimers. Corroborated by the static conformation of VWF, visualized by AFM imaging, we estimate that in VWF multimers approximately one-half of the constituent dimers are firmly closed via the strong intermonomer interaction. As firmly closed dimers markedly shorten VWF's effective length contributing to force sensing, they can be expected to tune VWF's sensitivity to hydrodynamic flow in the blood and to thereby significantly affect VWF's function in hemostasis and thrombosis.


Asunto(s)
Factor de von Willebrand/metabolismo , Secuencia de Aminoácidos , Dimerización , Microscopía de Fuerza Atómica , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Factor de von Willebrand/química
12.
Blood ; 127(9): 1183-91, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26670633

RESUMEN

Multimeric von Willebrand factor (VWF) is essential for primary hemostasis. The biosynthesis of VWF high-molecular-weight multimers requires spatial separation of each step because of varying pH value requirements. VWF is dimerized in the endoplasmic reticulum by formation of disulfide bonds between the C-terminal cysteine knot (CK) domains of 2 monomers. Here, we investigated the basic question of which protein catalyzes the dimerization. We examined the putative interaction of VWF and the protein disulfide isomerase PDIA1, which has previously been used to visualize endoplasmic reticulum localization of VWF. Excitingly, we were able to visualize the PDI-VWF dimer complex by high-resolution stochastic optical reconstruction microscopy and atomic force microscopy. We proved and quantified direct binding of PDIA1 to VWF, using microscale thermophoresis and fluorescence correlation spectroscopy (dissociation constants KD = 236 ± 66 nM and KD = 282 ± 123 nM by microscale thermophoresis and fluorescence correlation spectroscopy, respectively). The similar KD (258 ± 104 nM) measured for PDI interaction with the isolated CK domain and the atomic force microscopy images strongly indicate that PDIA1 binds exclusively to the CK domain, suggesting a key role of PDIA1 in VWF dimerization. On the basis of protein-protein docking and molecular dynamics simulations, combined with fluorescence microscopy studies of VWF CK-domain mutants, we suggest the following mechanism of VWF dimerization: PDI initiates VWF dimerization by forming the first 2 disulfide bonds Cys2771-2773' and Cys2771'-2773. Subsequently, the third bond, Cys2811-2811', is formed, presumably to protect the first 2 bonds from reduction, thereby rendering dimerization irreversible. This study deepens our understanding of the mechanism of VWF dimerization and the pathophysiological consequences of its inhibition.


Asunto(s)
Proteína Disulfuro Isomerasas/metabolismo , Multimerización de Proteína , Factor de von Willebrand/metabolismo , Cisteína/metabolismo , Disulfuros/metabolismo , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microscopía , Microscopía de Fuerza Atómica , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Transporte de Proteínas , Factor de von Willebrand/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...