Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 261(Pt 2): 129841, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309401

RESUMEN

The transcription factor FgHtf1 is important for conidiogenesis in Fusarium graminearum and it positively regulates the expression of the sporulation-related gene FgCON7. However, the regulatory mechanism underlying its functions is still unclear. The present study intends to uncover the functional mechanism of FgHtf1 in relation to FgCon7 in F. graminearum. We demonstrated that FgCON7 serves as a target gene for FgHtf1. Interestingly, FgCon7 also binds the promoter region of FgHTF1 to negatively regulate its expression, thus forming a negative-feedback loop. We demonstrated that FgHtf1 and FgCon7 have functional redundancy in fungal development. FgCon7 localizes in the nucleus and has transcriptional activation activity. Deletion of FgCON7 significantly reduces conidia production. 4444 genes were regulated by FgCon7 in ChIP-Seq, and RNA-Seq revealed 4430 differentially expressed genes in FgCON7 deletion mutant, with CCAAT serving as a consensus binding motif of FgCon7 to the target genes. FgCon7 directly binds the promoter regions of FgMSN2, FgABAA, FgVEA and FgSMT3 genes and regulates their expression. These genes were found to be important for conidiogenesis. To our knowledge, this is the first study that unveiled the mutual regulatory functions of FgCON7 and FgHTF1 to form a negative-feedback loop, and how the loop mediates sporulation in F. graminearum.


Asunto(s)
Fusarium , Factores de Transcripción , Retroalimentación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fusarium/fisiología , Expresión Génica , Regulación Fúngica de la Expresión Génica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología
2.
Nat Commun ; 15(1): 935, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296999

RESUMEN

Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are multi-subunit machineries that establish and maintain chromatin accessibility and gene expression by regulating chromatin structure. However, how the remodeling activities of SWI/SNF complexes are regulated in eukaryotes remains elusive. B-cell lymphoma/leukemia protein 7 A/B/C (BCL7A/B/C) have been reported as subunits of SWI/SNF complexes for decades in animals and recently in plants; however, the role of BCL7 subunits in SWI/SNF function remains undefined. Here, we identify a unique role for plant BCL7A and BCL7B homologous subunits in potentiating the genome-wide chromatin remodeling activities of SWI/SNF complexes in plants. BCL7A/B require the catalytic ATPase BRAHMA (BRM) to assemble with the signature subunits of the BRM-Associated SWI/SNF complexes (BAS) and for genomic binding at a subset of target genes. Loss of BCL7A and BCL7B diminishes BAS-mediated genome-wide chromatin accessibility without changing the stability and genomic targeting of the BAS complex, highlighting the specialized role of BCL7A/B in regulating remodeling activity. We further show that BCL7A/B fine-tune the remodeling activity of BAS complexes to generate accessible chromatin at the juvenility resetting region (JRR) of the microRNAs MIR156A/C for plant juvenile identity maintenance. In summary, our work uncovers the function of previously elusive SWI/SNF subunits in multicellular eukaryotes and provides insights into the mechanisms whereby plants memorize the juvenile identity through SWI/SNF-mediated control of chromatin accessibility.


Asunto(s)
Cromatina , Factores de Transcripción , Animales , Cromatina/genética , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Expresión Génica
3.
Nat Genet ; 56(1): 136-142, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38082204

RESUMEN

Most fresh bananas belong to the Cavendish and Gros Michel subgroups. Here, we report chromosome-scale genome assemblies of Cavendish (1.48 Gb) and Gros Michel (1.33 Gb), defining three subgenomes, Ban, Dh and Ze, with Musa acuminata ssp. banksii, malaccensis and zebrina as their major ancestral contributors, respectively. The insertion of repeat sequences in the Fusarium oxysporum f. sp. cubense (Foc) tropical race 4 RGA2 (resistance gene analog 2) promoter was identified in most diploid and triploid bananas. We found that the receptor-like protein (RLP) locus, including Foc race 1-resistant genes, is absent in the Gros Michel Ze subgenome. We identified two NAP (NAC-like, activated by apetala3/pistillata) transcription factor homologs specifically and highly expressed in fruit that directly bind to the promoters of many fruit ripening genes and may be key regulators of fruit ripening. Our genome data should facilitate the breeding and super-domestication of bananas.


Asunto(s)
Fusarium , Musa , Musa/genética , Fusarium/genética , Triploidía , Fitomejoramiento , Factores de Transcripción/genética , Enfermedades de las Plantas/genética
4.
Nucleic Acids Res ; 51(21): 11568-11583, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37850650

RESUMEN

The cistrome consists of all cis-acting regulatory elements recognized by transcription factors (TFs). However, only a portion of the cistrome is active for TF binding in a specific tissue. Resolving the active cistrome in plants remains challenging. In this study, we report the assay sequential extraction assisted-active TF identification (sea-ATI), a low-input method that profiles the DNA sequences recognized by TFs in a target tissue. We applied sea-ATI to seven plant tissues to survey their active cistrome and generated 41 motif models, including 15 new models that represent previously unidentified cis-regulatory vocabularies. ATAC-seq and RNA-seq analyses confirmed the functionality of the cis-elements from the new models, in that they are actively bound in vivo, located near the transcription start site, and influence chromatin accessibility and transcription. Furthermore, comparing dimeric WRKY CREs between sea-ATI and DAP-seq libraries revealed that thermodynamics and genetic drifts cooperatively shaped their evolution. Notably, sea-ATI can identify not only positive but also negative regulatory cis-elements, thereby providing unique insights into the functional non-coding genome of plants.


Asunto(s)
Plantas , Factores de Transcripción , Vocabulario , Cromatina , Unión Proteica/genética , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas/genética
5.
Nat Commun ; 14(1): 4711, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37543605

RESUMEN

Legumes can utilize atmospheric nitrogen via symbiotic nitrogen fixation, but this process is inhibited by high soil inorganic nitrogen. So far, how high nitrogen inhibits N2 fixation in mature nodules is still poorly understood. Here we construct a co-expression network in soybean nodule and find that a dynamic and reversible transcriptional network underlies the high N inhibition of N2 fixation. Intriguingly, several NAC transcription factors (TFs), designated as Soybean Nitrogen Associated NAPs (SNAPs), are amongst the most connected hub TFs. The nodules of snap1/2/3/4 quadruple mutants show less sensitivity to the high nitrogen inhibition of nitrogenase activity and acceleration of senescence. Integrative analysis shows that these SNAP TFs largely influence the high nitrogen transcriptional response through direct regulation of a subnetwork of senescence-associated genes and transcriptional regulators. We propose that the SNAP-mediated transcriptional network may trigger nodule senescence in response to high nitrogen.


Asunto(s)
Fabaceae , Glycine max , Glycine max/genética , Nitrógeno , Fijación del Nitrógeno/genética , Factores de Transcripción/genética , Nódulos de las Raíces de las Plantas/genética , Simbiosis/fisiología
7.
Plant Physiol ; 193(1): 855-873, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37279567

RESUMEN

Banana (Musa spp.) fruits, as typical tropical fruits, are cold sensitive, and lower temperatures can disrupt cellular compartmentalization and lead to severe browning. How tropical fruits respond to low temperature compared to the cold response mechanisms of model plants remains unknown. Here, we systematically characterized the changes in chromatin accessibility, histone modifications, distal cis-regulatory elements, transcription factor binding, and gene expression levels in banana peels in response to low temperature. Dynamic patterns of cold-induced transcripts were generally accompanied by concordant chromatin accessibility and histone modification changes. These upregulated genes were enriched for WRKY binding sites in their promoters and/or active enhancers. Compared to banana peel at room temperature, large amounts of banana WRKYs were specifically induced by cold and mediated enhancer-promoter interactions regulating critical browning pathways, including phospholipid degradation, oxidation, and cold tolerance. This hypothesis was supported by DNA affinity purification sequencing, luciferase reporter assays, and transient expression assay. Together, our findings highlight widespread transcriptional reprogramming via WRKYs during banana peel browning at low temperature and provide an extensive resource for studying gene regulation in tropical plants in response to cold stress, as well as potential targets for improving cold tolerance and shelf life of tropical fruits.


Asunto(s)
Conservación de Alimentos , Frutas , Musa , Musa/genética , Musa/fisiología , Frutas/fisiología , Frío , Histonas/metabolismo , Cromatina , Proteínas de Plantas/metabolismo , Elementos de Facilitación Genéticos , Código de Histonas , Factores de Transcripción/metabolismo , Lípidos de la Membrana/metabolismo
8.
Plants (Basel) ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111823

RESUMEN

SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors) are engines for almost all of the membrane fusion and exocytosis events in organism cells. In this study, we identified 84 SNARE genes from banana (Musa acuminata). Gene expression analysis revealed that the expression of MaSNAREs varied a lot in different banana organs. By analyzing their expression patterns under low temperature (4 °C), high temperature (45 °C), mutualistic fungus (Serendipita indica, Si) and fungal pathogen (Fusarium oxysporum f. sp. Cubense Tropical Race 4, FocTR4) treatments, many MaSNAREs were found to be stress responsive. For example, MaBET1d was up-regulate by both low and high temperature stresses; MaNPSN11a was up-regulated by low temperature but down-regulated by high temperature; and FocTR4 treatment up-regulated the expression of MaSYP121 but down-regulated MaVAMP72a and MaSNAP33a. Notably, the upregulation or downregulation effects of FocTR4 on the expression of some MaSNAREs could be alleviated by priorly colonized Si, suggesting that they play roles in the Si-enhanced banana wilt resistance. Foc resistance assays were performed in tobacco leaves transiently overexpressing MaSYP121, MaVAMP72a and MaSNAP33a. Results showed that transient overexpression of MaSYP121 and MaSNPA33a suppressed the penetration and spread of both Foc1 (Foc Race 1) and FocTR4 in tobacco leaves, suggesting that they play positive roles in resisting Foc infection. However, the transient overexpression of MaVAMP72a facilitated Foc infection. Our study can provide a basis for understanding the roles of MaSNAREs in the banana responses to temperature stress and mutualistic and pathogenic fungal colonization.

9.
Front Plant Sci ; 13: 975356, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212335

RESUMEN

Fruit ripening is accompanied by a wide range of metabolites and global changes in gene expression that are regulated by various factors. In this study, we investigated the molecular differences in red apple 'Hongmantang' fruits at three ripening stages (PS1, PS5 and PS9) through a comprehensive analysis of metabolome, transcriptome and chromatin accessibility. Totally, we identified 341 and 195 differentially accumulated metabolites (DAMs) in comparison I (PS5_vs_PS1) and comparison II (PS9_vs_PS5), including 57 and 23 differentially accumulated flavonoids (DAFs), respectively. Intriguingly, among these DAFs, anthocyanins and flavonols showed opposite patterns of variation, suggesting a possible competition between their biosynthesis. To unveil the underlying mechanisms, RNA-Seq and ATAC-Seq analyses were performed. A total of 852 DEGs significantly enriched in anthocyanin metabolism and 128 differential accessible regions (DARs) significantly enriched by MYB-related motifs were identified as up-regulated in Comparison I but down-regulated in Comparison II. Meanwhile, the 843 DEGs significantly enriched in phenylalanine metabolism and the 364 DARs significantly enriched by bZIP-related motifs showed opposite trends. In addition, four bZIPs and 14 MYBs were identified as possible hub genes regulating the biosynthesis of flavonols and anthocyanins. Our study will contribute to the understanding of anthocyanins and flavonols biosynthesis competition in red apple fruits during ripening.

10.
Int J Mol Sci ; 23(19)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36233216

RESUMEN

Ca2+-ATPases have been confirmed to play very important roles in plant growth and development and in stress responses. However, studies on banana (Musa acuminata) Ca2+-ATPases are very limited. In this study, we identified 18 Ca2+-ATPase genes from banana, including 6 P-IIA or ER (Endoplasmic Reticulum) type Ca2+-ATPases (MaEACs) and 12 P-IIB or Auto-Inhibited Ca2+-ATPases (MaACAs). The MaEACs and MaACAs could be further classified into two and three subfamilies, respectively. This classification is well supported by their gene structures, which are encoded by protein motif distributions. The banana Ca2+-ATPases were all predicted to be plasma membrane-located. The promoter regions of banana Ca2+-ATPases contain many cis-acting elements and transcription factor binding sites (TFBS). A gene expression analysis showed that banana Ca2+-ATPases were differentially expressed in different organs. By investigating their expression patterns in banana roots under different concentrations of Ca2+ treatments, we found that most banana Ca2+-ATPase members were highly expressed under 4 mM and 2 mM Ca2+ treatments, but their expression decreased under 1 mM and 0 mM Ca2+ treatments, suggesting that their downregulation might be closely related to reduced Ca accumulation and retarded growth under low Ca2+ and Ca2+ deficiency conditions. Our study will contribute to the understanding of the roles of Ca2+-ATPases in banana growth and Ca management.


Asunto(s)
Musa , Adenosina Trifosfatasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Musa/genética , Musa/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
11.
Mol Plant ; 15(7): 1227-1242, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35684964

RESUMEN

Plants have evolved a sophisticated set of mechanisms to adapt to drought stress. Transcription factors play crucial roles in plant responses to various environmental stimuli by modulating the expression of numerous stress-responsive genes. However, how the crosstalk between different transcription factor families orchestrates initiation of the key transcriptional network and the role of posttranscriptional modification of transcription factors, especially in cellular localization/trafficking in response to stress in rice, remain still largely unknown. In this study, we isolated an Osmybr57 mutant that displays a drought-sensitive phenotype through a genetic screen for drought stress sensitivity. We found that OsMYBR57, an MYB-related protein, directly regulates the expression of several key drought-related OsbZIPs in response to drought treatment. Further studies revealed that OsMYBR57 interacts with a homeodomain transcription factor, OsHB22, which also plays a positive role in drought signaling. We further demonstrate that OsFTIP6 interacts with OsHB22 and promotes the nucleocytoplasmic translocation of OsHB22 into the nucleus, where OsHB22 cooperates with OsMYBR57 to regulate the expression of drought-responsive genes. Our findings have revealed a mechanistic framework underlying the OsFTIP6-OsHB22-OsMYBR57 module-mediated regulation of drought response in rice. The OsFTIP6-mediated OsHB22 nucleocytoplasmic shuttling and OsMYBR57-OsHB22 regulation of OsbZIP transcription ensure precise control of expression of OsLEA3 and Rab21, and thereby regulate the response to water deficiency in rice.


Asunto(s)
Oryza , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Front Plant Sci ; 13: 819188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35283888

RESUMEN

Litchi is an important Sapindaceae fruit tree. Flowering in litchi is triggered by low temperatures in autumn and winter. It can be divided into early-, medium-, and late-flowering phenotypes according to the time for floral induction. Early-flowering varieties need low chilling accumulation level for floral induction, whereas the late-flowering varieties require high chilling accumulation level. In the present study, RNA-Seq of 87 accessions was performed and transcriptome-based genome-wide association studies (GWAS) was used to identify candidate genes involved in chilling accumulation underlying the time for floral induction. A total of 98,155 high-quality single-nucleotide polymorphism (SNP) sites were obtained. A total of 1,411 significantly associated SNPs and 1,115 associated genes (AGs) were identified, of which 31 were flowering-related, 23 were hormone synthesis-related, and 27 were hormone signal transduction-related. Association analysis between the gene expression of the AGs and the flowering phenotypic data was carried out, and differentially expressed genes (DEGs) in a temperature-controlled experiment were obtained. As a result, 15 flowering-related candidate AGs (CAGs), 13 hormone synthesis-related CAGs, and 11 hormone signal transduction-related CAGs were further screened. The expression levels of the CAGs in the early-flowering accessions were different from those in the late-flowering ones, and also between the flowering trees and non-flowering trees. In a gradient chilling treatment, flowering rates of the trees and the CAGs expression were affected by the treatment. Our present work for the first time provided candidate genes for genetic regulation of flowering in litchi using transcriptome-based GWAS.

13.
Int J Biol Macromol ; 204: 661-676, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35181326

RESUMEN

Fatty acid desaturase (FAD) plays important roles in plant growth and development and plant defense processes. In this study, we identified 27 MaFAD genes from the banana genome. According to the amino acid sequence similarities, their encoded proteins could be classified into five subfamilies. This classification is consistently supported by their gene and protein structures, conserved motifs and subcellular localizations. Segmental duplication events were found to play predominant roles in the MaFAD gene family expansion. Thirty miRNAs targeting MaFADs were identified and many hormone- and stress-responsive cis-acting elements and transcription factor binding sites (TFBSs) were identified in their promoters, indicating that the MaFADs expression regulation was very complicated. Gene expression analysis showed that some MaFADs showed significant differential expression in response to high and low temperature. FocTR4 influenced greatly the expression of several MaFADs and greatly induced the fatty acid (FA) accumulations in roots. Although S. indica showed no significant influence on the expression of most MaFADs, it could greatly alleviate the influence of FocTR4 on several MaFADs and FA biosynthesis. Our study revealed that MaFADs contributed greatly to the responses of high and low temperature stresses and mutualistic and parasitic fungi colonization in banana.


Asunto(s)
Musa , Flavina-Adenina Dinucleótido/metabolismo , Hongos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Musa/genética , Musa/metabolismo , Filogenia , Proteínas de Plantas/química , Estrés Fisiológico/genética , Temperatura
14.
Plant Physiol ; 188(4): 2166-2181, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35088866

RESUMEN

Histone deacetylase enzymes participate in the regulation of many aspects of plant development. However, the genome-level targets of histone deacetylation during apple (Malus domestica) fruit development have not been resolved in detail, and the mechanisms of regulation of such a process are unknown. We previously showed that the complex of ethylene response factor 4 (MdERF4) and the TOPLESS co-repressor (MdTPL4; MdERF4-MdTPL4) is constitutively active during apple fruit development (Hu et al., 2020), but whether this transcriptional repression complex is coupled to chromatin modification is unknown. Here, we show that a histone deacetylase (MdHDA19) is recruited to the MdERF4-MdTPL4 complex, thereby impacting fruit ethylene biosynthesis. Transient suppression of MdHDA19 expression promoted fruit ripening and ethylene production. To identify potential downstream target genes regulated by MdHDA19, we conducted chromatin immunoprecipitation (ChIP) sequencing of H3K9 and ChIP-quantitative polymerase chain reaction assays. We found that MdHDA19 affects ethylene production by facilitating H3K9 deacetylation and forms a complex with MdERF4-MdTPL4 to directly repress MdACS3a expression by decreasing the degree of acetylation. We demonstrate that an early-maturing-specific acetylation H3K9ac peak in MdACS3a and expression of MdACS3a were specifically up-regulated in fruit of an early-maturing, but not a late-maturing, cultivar. We provide evidence that a C-to-G mutation in the ethylene-responsive element binding factor-associated amphiphilic repression motif of MdERF4 reduces the repression of MdACS3a by the MdERF4-MdTPL4-MdHDA19 complex. Taken together, our results reveal that the MdERF4-MdTPL-MdHDA19 repressor complex participates in the epigenetic regulation of apple fruit ripening.


Asunto(s)
Malus , Epigénesis Genética , Etilenos/metabolismo , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Malus/metabolismo , Proteínas de Plantas/metabolismo
17.
Sci Rep ; 11(1): 9948, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976263

RESUMEN

The LOX genes have been identified and characterized in many plant species, but studies on the banana LOX genes are very limited. In this study, we respectively identified 18 MaLOX, 11 MbLOX, and 12 MiLOX genes from the Musa acuminata, M. balbisiana and M. itinerans genome data, investigated their gene structures and characterized the physicochemical properties of their encoded proteins. Banana LOXs showed a preference for using and ending with G/C and their encoded proteins can be classified into 9-LOX, Type I 13-LOX and Type II 13-LOX subfamilies. The expansion of the MaLOXs might result from the combined actions of genome-wide, tandem, and segmental duplications. However, tandem and segmental duplications contribute to the expansion of MbLOXs. Transcriptome data based gene expression analysis showed that MaLOX1, 4, and 7 were highly expressed in fruit and their expression levels were significantly regulated by ethylene. And 11, 12 and 7 MaLOXs were found to be low temperature-, high temperature-, and Fusarium oxysporum f. sp. Cubense tropical race 4 (FocTR4)-responsive, respectively. MaLOX8, 9 and 13 are responsive to all the three stresses, MaLOX4 and MaLOX12 are high temperature- and FocTR4-responsive; MaLOX6 and MaLOX17 are significantly induced by low temperature and FocTR4; and the expression of MaLOX7 and MaLOX16 are only affected by high temperature. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression levels of several MaLOXs are regulated by MeJA and FocTR4, indicating that they can increase the resistance of banana by regulating the JA pathway. Additionally, the weighted gene co-expression network analysis (WGCNA) of MaLOXs revealed 3 models respectively for 5 (MaLOX7-11), 3 (MaLOX6, 13, and 17), and 1 (MaLOX12) MaLOX genes. Our findings can provide valuable information for the characterization, evolution, diversity and functionality of MaLOX, MbLOX and MiLOX genes and are helpful for understanding the roles of LOXs in banana growth and development and adaptations to different stresses.


Asunto(s)
Lipooxigenasa/genética , Musa/genética , Frutas/metabolismo , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Estudio de Asociación del Genoma Completo/métodos , Lipooxigenasa/metabolismo , Lipooxigenasas/genética , Lipooxigenasas/metabolismo , Enfermedades de las Plantas/genética , Raíces de Plantas/metabolismo , Transcriptoma/genética
18.
Mol Hortic ; 1(1): 13, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37789474

RESUMEN

Petals and leaves share common evolutionary origins but have different phenotypic characteristics, such as the absence of stomata in the petals of most angiosperm species. Plant NAC transcription factor, NAP, is involved in ABA responses and regulates senescence-associated genes, and especially those that affect stomatal movement. However, the regulatory mechanisms and significance of NAP action in senescing astomatous petals is unclear. A major limiting factor is failure of flower opening and accelerated senescence. Our goal is to understand the finely regulatory mechanism of dehydration tolerance and aging in rose flowers. We functionally characterized RhNAP, an AtNAP-like transcription factor gene that is induced by dehydration and aging in astomatous rose petals. Cytokinins (CKs) are known to delay petal senescence and we found that a cytokinin oxidase/dehydrogenase gene 6 (RhCKX6) shares similar expression patterns with RhNAP. Silencing of RhNAP or RhCKX6 expression in rose petals by virus induced gene silencing markedly reduced petal dehydration tolerance and delayed petal senescence. Endogenous CK levels in RhNAP- or RhCKX6-silenced petals were significantly higher than those of the control. Moreover, RhCKX6 expression was reduced in RhNAP-silenced petals. This suggests that the expression of RhCKX6 is regulated by RhNAP. Yeast one-hybrid experiments and electrophoresis mobility shift assays showed that RhNAP binds to the RhCKX6 promoter in heterologous in vivo system and in vitro, respectively. Furthermore, the expression of putative signal transduction and downstream genes of ABA-signaling pathways were also reduced due to the repression of PP2C homolog genes by RhNAP in rose petals. Taken together, our study indicates that the RhNAP/RhCKX6 interaction represents a regulatory step enhancing dehydration tolerance in young rose petals and accelerating senescence in mature petals in a stomata-independent manner.

19.
Hortic Res ; 7: 74, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32377364

RESUMEN

Phytohormones are key factors in plant responsiveness to abiotic and biotic stresses, and maintaining hormone homeostasis is critically important during stress responses. Cut rose (Rosa hybrida) flowers experience dehydration stress during postharvest handling, and jasmonic acid (JA) levels change as a result of this stress. However, how JA is involved in dehydration tolerance remains unclear. We investigated the functions of the JA- and dehydration-induced RhHB1 gene, which encodes a homeodomain-leucine zipper I γ-clade transcription factor, in rose flowers. Silencing RhHB1 decreased petal dehydration tolerance and resulted in a persistent increase in JA-Ile content and reduced dehydration tolerance. An elevated JA-Ile level had a detrimental effect on rose petal dehydration tolerance. RhHB1 was shown to lower the transient induction of JA-Ile accumulation in response to dehydration. In addition to transcriptomic data, we obtained evidence that RhHB1 suppresses the expression of the lipoxygenase 4 (RhLOX4) gene by directly binding to its promoter both in vivo and in vitro. We propose that increased JA-Ile levels weaken the capacity for osmotic adjustment in petal cells, resulting in reduced dehydration tolerance. In conclusion, a JA feedback loop mediated by an RhHB1/RhLOX4 regulatory module provides dehydration tolerance by fine-tuning bioactive JA levels in dehydrated flowers.

20.
Genes (Basel) ; 11(3)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32197528

RESUMEN

Litchi is an important subtropical fruit tree that requires an appropriately low temperature to trigger floral initiation. Our previous studies have shown that reactive oxygen species (ROS) are involved in litchi flowering. To identify oxidative stress-induced flowering related genes in leaves, 'Nuomici' potted trees were grown at medium low-temperature conditions (18/13 °C for day/night, medium-temperature). The trees were treated with the ROS generator methyl viologen dichloride hydrate (MV) as the MV-generated ROS treatment (MM, medium-temperature plus MV) and water as the control treatment (M, medium-temperature plus water). Sixteen RNA-sequencing libraries were constructed, and each library generated more than 5,000,000 clean reads. A total of 517 differentially expressed genes (DEGs) were obtained. Among those DEGs, plant hormone biosynthesis and signal transduction genes, ROS-specific transcription factors, such as AP2/ERF and WRKY genes, stress response genes, and flowering-related genes FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2) were significantly enriched. Then, as a confirmatory experiment, the potted trees were uniformly sprayed with MV, N,N'-dimethylthiourea (DMTU, ROS scavenger) plus MV, and water at medium-temperature. The results showed that the MV-generated ROS promoted flowering and changed related gene expression, but these effects were repressed by DMTU treatment. The results of our studies indicate that ROS could promote flowering and partly bypass chilling for litchi flowering.


Asunto(s)
Flores/genética , Redes Reguladoras de Genes , Litchi/genética , Estrés Oxidativo , Transcriptoma , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Litchi/crecimiento & desarrollo , Litchi/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...