Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hepatology ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39250438

RESUMEN

BACKGROUND AIMS: Partial hepatectomy (PHx)-induced liver regeneration causes the increase in relative blood flow rate within the liver, which dilates hepatic sinusoids and applies mechanical stretch on liver sinusoidal endothelial cells (LSECs). Heparin-binding EGF-like growth factor (HB-EGF) is a crucial growth factor during liver regeneration. We aimed to investigate whether this sinusoidal dilation-induced stretch promotes HB-EGF secretion in LSECs and what the related molecular mechanism is. APPROACH RESULTS: In vivo PHx, ex vivo liver perfusion and in vitro LSEC mechanical stretch were applied to detect HB-EGF expression in LSECs and hepatocyte proliferation. Knockdown or inhibition of mechanosensitive proteins were used to unravel the molecular mechanism in response to stretch. This stretch triggers amplitude- and duration-dependent HB-EGF up-regulation in LSECs, which is mediated by Yes-associated protein (YAP) nuclear translocation and binding to TEAD. This YAP translocation is achieved in two ways: On one hand, F-actin polymerization-mediated expansion of nuclear pores promotes YAP entry into nucleus passively. On the other hand, F-actin polymerization up-regulates the expression of BAG family molecular chaperone regulator 3 (BAG-3), which binds with YAP to enter nucleus cooperatively. In this process, ß1-integrin serves as a target mechanosensory in stretch-induced signaling pathways. This HB-EGF secretion-promoted liver regeneration after 2/3 PHx is attenuated in endothelial cell-specific Yap1-deficient mice. CONCLUSIONS: Our findings indicate that mechanical stretch-induced HB-EGF up-regulation in LSECs via YAP translocation can promote the hepatocyte proliferation during liver regeneration through a mechanocrine manner, which deepens the understanding of the mechanical-biological coupling in liver regeneration.

2.
Nat Chem Biol ; 20(8): 1066-1077, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38448735

RESUMEN

Synthetic signaling receptors enable programmable cellular responses coupling with customized inputs. However, engineering a designer force-sensing receptor to rewire mechanotransduction remains largely unexplored. Herein, we introduce nongenetically engineered artificial mechanoreceptors (AMRs) capable of reprogramming non-mechanoresponsive receptor tyrosine kinases (RTKs) to sense user-defined force cues, enabling de novo-designed mechanotransduction. AMR is a modular DNA-protein chimera comprising a mechanosensing-and-transmitting DNA nanodevice grafted on natural RTKs via aptameric anchors. AMR senses intercellular tensile force via an allosteric DNA mechano-switch with tunable piconewton-sensitive force tolerance, actuating a force-triggered dynamic DNA assembly to manipulate RTK dimerization and activate intracellular signaling. By swapping the force-reception ligands, we demonstrate the AMR-mediated activation of c-Met, a representative RTK, in response to the cellular tensile forces mediated by cell-adhesion proteins (integrin, E-cadherin) or membrane protein endocytosis (CI-M6PR). Moreover, AMR also allows the reprogramming of FGFR1, another RTK, to customize mechanobiological function, for example, adhesion-mediated neural stem cell maintenance.


Asunto(s)
ADN , Mecanorreceptores , Mecanotransducción Celular , ADN/metabolismo , ADN/química , Mecanotransducción Celular/efectos de los fármacos , Humanos , Mecanorreceptores/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Cadherinas/metabolismo , Cadherinas/genética
3.
Biomaterials ; 305: 122462, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38171118

RESUMEN

Liver sinusoidal endothelial cells (LSECs) are highly specific endothelial cells which play an essential role in the maintenance of liver homeostasis. During the progression of liver fibrosis, matrix stiffening promotes LSEC defenestration, however, the underlying mechanotransduction mechanism remains poorly understood. Here, we applied stiffness-tunable hydrogels to assess the matrix stiffening-induced phenotypic changes in primary mouse LSECs. Results indicated that increased stiffness promoted LSEC defenestration through cytoskeletal reorganization. LSECs sensed the increased matrix stiffness via focal adhesion kinase (FAK), leading to the activation of p38-mitogen activated protein kinase activated protein kinase 2 (MK2) pathway, thereby inducing actin remodeling via LIM Kinase 1 (LIMK1) and Cofilin. Interestingly, inhibition of FAK or p38-MK2 pathway was able to effectively restore the fenestrae to a certain degree in LSECs isolated from early to late stages of liver fibrosis mice. Thus, this study highlights the impact of mechanotransduction in LSEC defenestration, and provides novel insights for potential therapeutic interventions for liver fibrosis.


Asunto(s)
Células Endoteliales , Mecanotransducción Celular , Ratones , Animales , Células Endoteliales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Hígado/patología , Cirrosis Hepática/patología
4.
JHEP Rep ; 5(12): 100905, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37920845

RESUMEN

Background & Aims: Liver paracrine signaling from liver sinusoid endothelial cells to hepatocytes in response to mechanical stimuli is crucial in highly coordinated liver regeneration. Interstitial flow through the fenestrated endothelium inside the space of Disse potentiates the role of direct exposure of hepatocytes to fluid flow in the immediate regenerative responses after partial hepatectomy, but the underlying mechanisms remain unclear. Methods: Mouse liver perfusion was used to identify the effects of interstitial flow on hepatocyte proliferation ex vivo. Isolated hepatocytes were further exposed to varied shear stresses directly in vitro. Knockdown and/or inhibition of mechanosensitive proteins were used to unravel the signaling pathways responsible for cell proliferation. Results: An increased interstitial flow was visualized and hepatocytes' regenerative response was demonstrated experimentally by ex vivo perfusion of mouse livers. In vitro measurements also showed that fluid flow initiated hepatocyte proliferation in a duration- and amplitude-dependent manner. Mechanistically, flow enhanced ß1 integrin expression and nuclear translocation of YAP (yes-associated protein), via the Hippo pathway, to stimulate hepatocytes to re-enter the cell cycle. Conclusions: Hepatocyte proliferation was initiated after direct exposure to interstitial flow ex vivo or shear stress in vitro, which provides new insights into the contributions of mechanical forces to liver regeneration. Impact and implications: By using both ex vivo liver perfusion and in vitro flow exposure tests, we identified the roles of interstitial flow in the space of Disse in stimulating hepatocytes to re-enter the cell cycle. We found an increase in shear flow-induced hepatocyte proliferation via ß1 integrin-YAP mechanotransductive pathways. This serves as a useful model to potentiate hepatocyte expansion in vitro using mechanical forces.

5.
FEBS J ; 290(19): 4695-4711, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37254632

RESUMEN

As a known receptor-ligand pair for mediating cell-cell or cell-extracellular matrix adhesions, cluster of differentiation 44 (CD44)-hyaluronan (HA) interactions are not only determined by molecular weight (MW) diversity of HA, but also are regulated by external physical or mechanical factors. However, the coupling effects of HA MW and shear flow are still unclear. Here, we compared the differences between high molecular weight HA (HHA) and low molecular weight HA (LHA) binding to CD44 under varied shear stresses. The results demonstrated that HHA dominated the binding phase but LHA was in favour of the shear resistance phase, respectively, under shear stress range ≤ 1.0 dyne·cm-2 . This difference was attributed to the high binding strength of the CD44-HHA interaction, as well as the optimal distribution matching between both CD44 and HA sides. Activation of the intracellular signal pathway was sensitive to both HA MW and shear flow. Our findings also indicate that only CD44-HHA interaction under shear stress of 0.2 dyne·cm-2 could significantly enhance the clustering of CD44, as well as induce the increase in both CD44 and CD18 expression. The present study offers the basis for further quantification of the features of CD44-HA interactions and their biological functions.


Asunto(s)
Ácido Hialurónico , Transducción de Señal , Ácido Hialurónico/metabolismo , Adhesión Celular , Matriz Extracelular/metabolismo , Receptores de Hialuranos/metabolismo
6.
ACS Appl Mater Interfaces ; 15(14): 17577-17591, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36976830

RESUMEN

Migrating neutrophils are found to leave behind subcellular trails in vivo, but the underlying mechanisms remain unclear. Here, an in vitro cell migration test plus an in vivo observation was applied to monitor neutrophil migration on intercellular cell adhesion molecule-1 (ICAM-1) presenting surfaces. Results indicated that migrating neutrophils left behind long-lasting, chemokine-containing trails. Trail formation tended to alleviate excessive cell adhesion enhanced by the trans-binding antibody and maintain efficient cell migration, which was associated with differential instantaneous edge velocity between the cell front and rear. CD11a and CD11b worked differently in inducing trail formation with polarized distributions on the cell body and uropod. Trail release at the cell rear was attributed to membrane ripping, in which ß2-integrin was disrupted from the cell membrane through myosin-mediated rear contraction and integrin-cytoskeleton dissociation, potentiating a specialized strategy of integrin loss and cell deadhesion to maintain efficient migration. Moreover, neutrophil trails left on the substrate served as immune forerunners to recruit dendritic cells. These results provided an insight in elucidating the mechanisms of neutrophil trail formation and deciphering the roles of trail formation in efficient neutrophil migration.


Asunto(s)
Movimiento Celular , Neutrófilos , Adhesión Celular , Neutrófilos/citología , Neutrófilos/metabolismo , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Células Cultivadas , Espectroscopía Infrarroja por Transformada de Fourier , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo
7.
Biomicrofluidics ; 16(5): 054110, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36313188

RESUMEN

In fatty liver diseases, such as liver fibrosis and liver cirrhosis, blood flow in hepatic sinusoids, an elementary building block of the liver lobule, tends to bypass through collateral vessels inside sinusoids and presents distinct sinusoidal flows compared to normal physiological flows. It remains unclear in those flow characteristics in branched sinusoids and the correlation of pathological flows with liver lesions, mainly due to the difficulty of direct hemodynamics measurements in the sinusoids. Here, we developed a dual-branched theoretical model of hepatic sinusoidal flow to elucidate the relevant flow dynamics and mass transport. Numerical simulations, based on the lattice Boltzmann method, indicated that the flow velocity distribution in hepatic sinusoids is mainly dominated by endothelium permeability and presents a non-monotonic variation with the permeability at the fusion segment of these branched sinusoids. Flow-induced shear stress on the endothelium at the side of the Disse space exhibited a biphasic pattern, yielding a low shear stress region at the junctional site. Meanwhile, a highly polarized distribution of lipoproteins concentration was also presented at the low shear stress region, indicating a localized accumulation of typical hepatic serum proteins. Thus, this work provides the basic understanding of blood flow features and mass transport regulations in branched hepatic sinusoids.

8.
Biophys J ; 121(23): 4666-4678, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36271623

RESUMEN

Double-layered channels of sinusoid lumen and Disse space separated by fenestrated liver sinusoidal endothelial cells (LSECs) endow the unique mechanical environment of the liver sinusoid network, which further guarantees its biological function. It is also known that this mechanical environment changes dramatically under liver fibrosis and cirrhosis, including the reduced plasma penetration and metabolite exchange between the two flow channels and the reduced Disse space deformability. The squeezing of leukocytes through narrow sinusoid lumen also affects the mechanical environment of liver sinusoid. To date, the detailed flow-field profile of liver sinusoid is still far from clear due to experimental limitations. It also remains elusive whether and how the varied physical properties of the pathological liver sinusoid regulate the fluid flow characteristics. Here a numerical model based on the immersed boundary method was established, and the effects of Disse space and leukocyte elasticities, endothelium permeability, and sinusoidal stenosis degree on fluid flow as well as leukocyte trafficking were specified upon a mimic liver sinusoid structure. Results showed that endothelium permeability dominantly controlled the plasma penetration velocity across the endothelium, whereas leukocyte squeezing promoted local penetration and significantly regulated wall shear stress on hepatocytes, which was strongly related to the Disse space and leukocyte deformability. Permeability and elasticity cooperatively regulated the process of leukocytes trafficking through the liver sinusoid, especially for stiffer leukocytes. This study will offer new insights into deeper understanding of the elaborate mechanical features of liver sinusoid and corresponding biological function.


Asunto(s)
Células Endoteliales , Leucocitos , Hígado
9.
Curr Biol ; 32(22): 4854-4868.e5, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36272403

RESUMEN

How gene activities and biomechanics together direct organ shapes is poorly understood. Plant leaf and floral organs develop from highly similar initial structures and share similar gene expression patterns, yet they gain drastically different shapes later-flat and bilateral leaf primordia and radially symmetric floral primordia, respectively. We analyzed cellular growth patterns and gene expression in young leaves and flowers of Arabidopsis thaliana and found significant differences in cell growth rates, which correlate with convergence sites of phytohormone auxin that require polar auxin transport. In leaf primordia, the PRESSED-FLOWER-expressing middle domain grows faster than adjacent adaxial domain and coincides with auxin convergence. In contrast, in floral primordia, the LEAFY-expressing domain shows accelerated growth rates and pronounced auxin convergence. This distinct cell growth dynamics between leaf and flower requires changes in levels of cell-wall pectin de-methyl-esterification and mechanical properties of the cell wall. Data-driven computer model simulations at organ and cellular levels demonstrate that growth differences are central to obtaining distinct organ shape, corroborating in planta observations. Together, our study provides a mechanistic basis for the establishment of early aerial organ symmetries through local modulation of differential growth patterns with auxin and biomechanics.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores
10.
FEBS J ; 289(10): 2877-2894, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34839587

RESUMEN

Molecular-level selectin-cluster of differentiation 44 (CD44) interactions are far from clear because of the complexity and diversity of CD44 glycosylation and isoforms expressed on various types of cells. By combining experimental measurements and simulation predictions, the binding kinetics of three selectin members to the recombinant CD44 were quantified and the corresponding microstructural mechanisms were explored, respectively. Experimental results showed that the E-selectin-CD44 interactions mainly mediated the firm adhesion of microbeads under shear flow with the strongest rupture force. P- and L-selectins had similar interaction strength but different association and dissociation rates by mediating stable rolling and transient adhesions of microbeads, respectively. Molecular docking and molecular dynamics (MD) simulations predicted that the binding epitopes of CD44 to selectins are all located at the side face of each selectin, although the interfaces denoted as the hinge region are between lectin and epidermal growth factor domains of E-selectin, Lectin domain side of P-selectin and epidermal growth factor domain side of L-selectin, respectively. The lowest binding free energy, the largest rupture force and the longest lifetime for E-selectin, as well as the comparable values for P- and L-selectins, demonstrated in both equilibration and steered MD simulations, supported the above experimental results. These results offer basic data for understanding the functional differences of selectin-CD44 interactions.


Asunto(s)
Selectina E , Selectina L , Adhesión Celular , Selectina E/química , Selectina E/genética , Selectina E/metabolismo , Factor de Crecimiento Epidérmico , Cinética , Selectina L/metabolismo , Simulación del Acoplamiento Molecular , Selectinas/metabolismo
11.
Front Cell Dev Biol ; 9: 786254, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869388

RESUMEN

Many eukaryotic cells, including neutrophils and Dictyostelium cells, are able to undergo correlated random migration in the absence of directional cues while reacting to shallow gradients of chemoattractants with exquisite precision. Although progress has been made with regard to molecular identities, it remains elusive how molecular mechanics are integrated with cell mechanics to initiate and manipulate cell motility. Here, we propose a two dimensional (2D) cell migration model wherein a multilayered dynamic seesaw mechanism is accompanied by a mechanical strain-based inhibition mechanism. In biology, these two mechanisms can be mapped onto the biochemical feedback between phosphoinositides (PIs) and Rho GTPase and the mechanical interplay between filamin A (FLNa) and FilGAP. Cell migration and the accompanying morphological changes are demonstrated in numerical simulations using a particle-spring model, and the diffusion in the cell membrane are simulations using a one dimensional (1D) finite differences method (FDM). The fine balance established between endogenous signaling and a mechanically governed inactivation scheme ensures the endogenous cycle of self-organizing pseudopods, accounting for the correlated random migration. Furthermore, this model cell manifests directional and adaptable responses to shallow graded signaling, depending on the overwhelming effect of the graded stimuli guidance on strain-based inhibition. Finally, the model cell becomes trapped within an obstacle-ridden spatial region, manifesting a shuttle run for local explorations and can chemotactically "escape", illustrating again the balance required in the complementary signaling pathways.

12.
Biophys J ; 120(21): 4859-4873, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34536388

RESUMEN

Hepatic sinusoids present complex anatomical structures such as the endothelial sieve pores and the Disse space, which govern the microscopic blood flow in the sinusoids and are associated with structural variations in liver fibrosis and cirrhosis. However, the contributions of the permeability of endothelial and collagen layers and the roughness of hepatocyte microvilli to the features of this microflow remain largely unknown. Here, an immersed boundary method coupled with a lattice Boltzmann method was adopted in an in vitro hepatic sinusoidal model, and flow field and erythrocyte deformation analyses were conducted by introducing three new source terms including permeability of the endothelial layer, resistance of hepatocyte microvilli and collagen layers, and deformation of red blood cells (RBCs). Numerical calculations indicated that alterations in endothelial permeability could significantly affect the flow velocity and flow rate distributions in hepatic sinusoids. Interestingly, a biphasic regulating pattern of shear stress occurred simultaneously on the surface of hepatocytes and the lower side of endothelium, i.e., the shear stress increased with increased thickness of hepatocyte microvilli and collagen layer when the endothelial permeability was high but decreased with the increase of the thickness at low endothelial permeability. Additionally, this specified microflow manipulates typical RBC deformation inside the sinusoid, yielding one-third of the variation of deformable index with varied endothelial permeability. These simulations not only are consistent with experimental measurements using in vitro liver sinusoidal chip but also elaborate the contributions of endothelial and collagen layer permeability and wall roughness. Thus, our results provide a basis for further characterizing this microflow and understanding its effects on cellular migration and deformation in the hepatic sinusoids.


Asunto(s)
Capilares , Hígado , Eritrocitos , Hemodinámica , Hepatocitos
13.
Biomater Sci ; 9(10): 3776-3790, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33876166

RESUMEN

Mechanical or physical cues are associated with the growth and differentiation of embryonic stem cells (ESCs). While the substrate stiffness or topography independently affects the differentiation of ESCs, their cooperative regulation on lineage-specific differentiation remains largely unknown. Here, four topographical configurations on stiff or soft polyacrylamide hydrogel were combined to direct hepatic differentiation of human H1 cells via a four-stage protocol, and the coupled impacts of stiffness and topography were quantified at distinct stages. Data indicated that the substrate stiffness is dominant in stemness maintenance on stiff gel and hepatic differentiation on soft gel while substrate topography assists the differentiation of hepatocyte-like cells in positive correlation with the circularity of H1 clones initially formed on the substrate. The differentiated cells exhibited liver-specific functions such as maintaining the capacities of CYP450 metabolism, glycogen synthesis, ICG engulfment, and repairing liver injury in CCl4-treated mice. These results implied that the coupling of substrate stiffness and topography, combined with the biochemical signals, is favorable to improve the efficiency and functionality of hepatic differentiation of human ESCs.


Asunto(s)
Células Madre Embrionarias Humanas , Animales , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias , Hígado , Ratones
14.
FASEB J ; 35(5): e21521, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33811691

RESUMEN

Transendothelial migration (TEM) of neutrophils under blood flow is critical in the inflammatory cascade. However, the role of endothelial plasticity in this process is not fully understood. Therefore, we used an in vitro model to test the dynamics of human polymorphonuclear neutrophil (PMN) TEM across lipopolysaccharide-treated human umbilical vein endothelial cell (HUVEC) monolayers. Interestingly, shRNA-E-selectin knockdown in HUVECs destabilized endothelial junctional integrity by reducing actin branching and increasing stress fiber at cell-cell junctions. This process is accomplished by downregulating the activation of cortactin and Arp2/3, which in turn alters the adhesive function of VE-cadherin, enhancing PMN transmigration. Meanwhile, redundant P-selectins possess overlapping functions in E-selectin-mediated neutrophil adhesion, and transmigration. These results demonstrate, to our knowledge, for the first time, that E-selectins negatively regulate neutrophil transmigration through alterations in endothelial plasticity. Furthermore, it improves our understanding of the mechanisms underlying actin remodeling, and junctional integrity, in endothelial cells mediating leukocyte TEM.


Asunto(s)
Movimiento Celular , Selectina E/metabolismo , Endotelio Vascular/fisiología , Uniones Intercelulares/fisiología , Neutrófilos/fisiología , Migración Transendotelial y Transepitelial , Proteína 2 Relacionada con la Actina/genética , Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/genética , Proteína 3 Relacionada con la Actina/metabolismo , Células Cultivadas , Selectina E/genética , Endotelio Vascular/citología , Humanos , Neutrófilos/citología , Seudópodos
15.
Mol Plant ; 14(6): 949-962, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33722761

RESUMEN

Leaf shape is highly variable within and among plant species, ranging from slender to oval shaped. This is largely determined by the proximodistal axis of growth. However, little is known about how proximal-distal growth is controlled to determine leaf shape. Here, we show that Arabidopsis leaf and sepal proximodistal growth is tuned by two phytohormones. Two class A AUXIN RESPONSE FACTORs (ARFs), ARF6 and ARF8, activate the transcription of DWARF4, which encodes a key brassinosteroid (BR) biosynthetic enzyme. At the cellular level, the phytohormones promote more directional cell expansion along the proximodistal axis, as well as final cell sizes. BRs promote the demethyl-esterification of cell wall pectins, leading to isotropic in-plane cell wall loosening. Notably, numerical simulation showed that isotropic cell wall loosening could lead to directional cell and organ growth along the proximodistal axis. Taken together, we show that auxin acts through biosynthesis of BRs to determine cell wall mechanics and directional cell growth to generate leaves of variable roundness.


Asunto(s)
Arabidopsis/genética , Brasinoesteroides/metabolismo , Pared Celular , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Anisotropía , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transducción de Señal , Factores de Transcripción/metabolismo
16.
Nanoscale ; 13(12): 6053-6065, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33683247

RESUMEN

Conformational changes of proteins play a vital role in implementing their functions and revealing the underlying mechanisms in various biological processes. It is still challenging to monitor protein conformations with temporal fingerprints of current-resistance pulses in the nanopore technique. Here the low-resolution morphologies of different conformations of a typical integrin, αxß2, were estimated via relative blockade currents simulated from all-atom molecular dynamics (MD). Distinct conformational states of αxß2 were directly explained by the volume and shape identifiers. Protein modulation in ionic current was analyzed from the conductivity distribution inside the protein-blocked nanopore. Combining a discrete model with spheroidal approximation, a MD-based approach was developed to theoretically predict the volume and shape of the nanopore for sensing αxß2. This method was also applicable in specifying morphological identifiers of six other proteins, and the theoretical predictions are in good agreement with the experimental measurements. These results potentiated the validity of this method for the conformational identification of proteins in nanopores.


Asunto(s)
Nanoporos , Simulación de Dinámica Molecular , Conformación Proteica , Transporte de Proteínas , Proteínas
17.
Am J Physiol Gastrointest Liver Physiol ; 320(3): G272-G282, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296275

RESUMEN

Extracellular matrix (ECM) rigidity has important effects on cell behaviors and increases sharply in liver fibrosis and cirrhosis. Hepatic blood flow is essential in maintaining hepatocytes' (HCs) functions. However, it is still unclear how matrix stiffness and shear stresses orchestrate HC phenotype in concert. A fibrotic three-dimensional (3-D) liver sinusoidal model is constructed using a porous membrane sandwiched between two polydimethylsiloxane (PDMS) layers with respective flow channels. The HCs are cultured in collagen gels of various stiffnesses in the lower channel, whereas the upper channel is pre-seeded with liver sinusoidal endothelial cells (LSECs) and accessible to shear flow. The results reveal that HCs cultured within stiffer matrices exhibit reduced albumin production and cytochrome P450 (CYP450) reductase expression. Low shear stresses enhance synthetic and metabolic functions of HC, whereas high shear stresses lead to the loss of HC phenotype. Furthermore, both mechanical factors regulate HC functions by complementing each other. These observations are likely attributed to mechanically induced mass transport or key signaling molecule of hepatocyte nuclear factor 4α (HNF4α). The present study results provide an insight into understanding the mechanisms of HC dysfunction in liver fibrosis and cirrhosis, especially from the viewpoint of matrix stiffness and blood flow.NEW & NOTEWORTHY A fibrotic three-dimensional (3-D) liver sinusoidal model was constructed to mimic different stages of liver fibrosis in vivo and to explore the cooperative effects of matrix stiffness and shear stresses on hepatocyte (HC) functions. Mechanically induced alterations of mass transport mainly contributed to HC functions via typical mechanosensitive signaling.


Asunto(s)
Matriz Extracelular/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/metabolismo , Microfluídica/métodos , Cultivo Primario de Células/métodos , Estrés Mecánico , Albúminas/metabolismo , Animales , Células Cultivadas , Sistema Enzimático del Citocromo P-450/metabolismo , Dimetilpolisiloxanos/química , Matriz Extracelular/química , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/patología , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Microfluídica/instrumentación , Andamios del Tejido/química
18.
Curr Biol ; 30(20): 3972-3985.e6, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-32916107

RESUMEN

Plant organs can adopt a wide range of shapes, resulting from highly directional cell growth and divisions. We focus here on leaves and leaf-like organs in Arabidopsis and tomato, characterized by the formation of thin, flat laminae. Combining experimental approaches with 3D mechanical modeling, we provide evidence that leaf shape depends on cortical microtubule mediated cellulose deposition along the main predicted stress orientations, in particular, along the adaxial-abaxial axis in internal cell walls. This behavior can be explained by a mechanical feedback and has the potential to sustain and even amplify a preexisting degree of flatness, which in turn depends on genes involved in the control of organ polarity and leaf margin formation.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Tipificación del Cuerpo/fisiología , Morfogénesis/fisiología , Hojas de la Planta/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Anisotropía , Arabidopsis/anatomía & histología , Retroalimentación , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/anatomía & histología , Microtúbulos/fisiología , Tamaño de los Órganos/fisiología , Hojas de la Planta/anatomía & histología , Estrés Mecánico
19.
Biophys J ; 119(5): 966-977, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814058

RESUMEN

Integrins are heterodimeric transmembrane proteins that mediate cellular adhesion and bidirectional mechanotransductions through their conformational allostery. The allosteric pathway of an I-domain-containing integrin remains unclear because of its complexity and lack of effective experiments. For a typical I-domain-containing integrin αXß2, molecular dynamics simulations were employed here to investigate the conformational dynamics in the first two steps of outside-in activation, the bindings of both the external and internal ligands. Results showed that the internal ligand binding is a prerequisite to the allosteric transmission from the α- to ß-subunits and the exertion of external force to integrin-ligand complex. The opening state of αI domain with downward movement and lower half unfolding of α7-helix ensures the stable intersubunit conformational transmission through external ligand binding first and internal ligand binding later. Reverse binding order induces a, to our knowledge, novel but unstable swingout of ß-subunit Hybrid domain with the retained close states of both αI and ßI domains. Prebinding of external ligand greatly facilitates the following internal ligand binding and vice versa. These simulations furthered the understanding in the outside-in activation of I-domain-containing integrins from the viewpoint of internal allosteric pathways.


Asunto(s)
Integrinas , Simulación de Dinámica Molecular , Sitios de Unión , Adhesión Celular , Ligandos , Unión Proteica
20.
Biochim Biophys Acta Gen Subj ; 1864(12): 129702, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32814074

RESUMEN

BACKGROUND: Liver sinusoidal endothelial cells (LSECs) display unique fenestrated morphology. Alterations in the size and number of fenestrae play a crucial role in the progression of various liver diseases. While their features have been visualized using atomic force microscopy (AFM), the in situ imaging methods and off-line analyses are further required for fenestra quantification. METHODS: Primary mouse LSECs were cultured on a collagen-I-coated culture dish, or a polydimethylsiloxane (PDMS) or polyacrylamide (PA) hydrogel substrate. An AFM contact mode was applied to visualize fenestrae on individual fixed LSECs. Collected images were analyzed using an in-house developed image recognition program based on fully convolutional networks (FCN). RESULTS: Key scanning parameters were first optimized for visualizing the fenestrae on LSECs on culture dish, which was also applicable for the LSECs cultured on various hydrogels. The intermediate-magnification morphology images of LSECs were used for developing the FCN-based, fenestra recognition program. This program enabled us to recognize the vast majority of fenestrae from AFM images after twice trainings at a typical accuracy of 81.6% on soft substrate and also quantify the statistics of porosity, number of fenestrae and distribution of fenestra diameter. CONCLUSIONS: Combining AFM imaging with FCN training is able to quantify the morphological distributions of LSEC fenestrae on various substrates. SIGNIFICANCE: AFM images acquired and analyzed here provided the global information of surface ultramicroscopic structures over an entire cell, which is fundamental in understanding their regulatory mechanisms and pathophysiological relevance in fenestra-like evolution of individual cells on stiffness-varied substrates.


Asunto(s)
Células Endoteliales/citología , Hígado/citología , Microscopía de Fuerza Atómica , Animales , Células Cultivadas , Aprendizaje Profundo , Células Endoteliales/ultraestructura , Hígado/ultraestructura , Masculino , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA