Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(5): 955-966.e4, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38325379

RESUMEN

SUCNR1 is an auto- and paracrine sensor of the metabolic stress signal succinate. Using unsupervised molecular dynamics (MD) simulations (170.400 ns) and mutagenesis across human, mouse, and rat SUCNR1, we characterize how a five-arginine motif around the extracellular pole of TM-VI determines the initial capture of succinate in the extracellular vestibule (ECV) to either stay or move down to the orthosteric site. Metadynamics demonstrate low-energy succinate binding in both sites, with an energy barrier corresponding to an intermediate stage during which succinate, with an associated water cluster, unlocks the hydrogen-bond-stabilized conformationally constrained extracellular loop (ECL)-2b. Importantly, simultaneous binding of two succinate molecules through either a "sequential" or "bypassing" mode is a frequent endpoint. The mono-carboxylate NF-56-EJ40 antagonist enters SUCNR1 between TM-I and -II and does not unlock ECL-2b. It is proposed that occupancy of both high-affinity sites is required for selective activation of SUCNR1 by high local succinate concentrations.


Asunto(s)
Receptores Acoplados a Proteínas G , Ácido Succínico , Ratones , Ratas , Animales , Humanos , Ácido Succínico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Simulación de Dinámica Molecular , Succinatos/metabolismo , Estrés Fisiológico
2.
ACS Med Chem Lett ; 13(12): 1839-1847, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36518697

RESUMEN

The free fatty acid receptors FFAR1 and FFAR4 are considered promising therapeutic targets for management of metabolic and inflammatory diseases. However, there is a need for entirely novel chemical scaffolds, since many of the highly similar lipophilic chemotypes in development have been abandoned by the pharmaceutical industry, due to toxic effects on hepatocytes and ß-cells. Our group has recently reported the discovery of a 1,3,5-triazine-2-amine-based compound that acts as an allosteric agonist on FFAR1. Here, we present the synthesis and investigation of the structure-activity relationship of an extensive set of analogues of which many display dual-acting agonist properties for both FFAR1 and FFAR4. In several rounds of optimization, we discovered multiple analogues with single-digit nanomolar potency on FFAR1. Pending additional optimization for metabolic stability, the compounds in this study present novel ways of providing beneficial glycemic control while avoiding the notorious toxicity challenges associated with previously identified chemotypes.

3.
ChemMedChem ; 16(17): 2623-2627, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34270165

RESUMEN

The G protein-coupled receptor GPR183/EBI2, which is activated by oxysterols, is a therapeutic target for inflammatory and metabolic diseases where both antagonists and agonists are of potential interest. Using the piperazine diamide core of the known GPR183 antagonist (E)-3-(4-bromophenyl)-1-(4-(4-methoxybenzoyl)piperazin-1-yl)prop-2-en-1-one (NIBR189) as starting point, we identified and sourced 79 structurally related compounds that were commercially available. In vitro screening of this compound collection using a Ca2+ mobilization assay resulted in the identification of 10 compounds with agonist properties. To enable establishment of initial structure-activity relationship trends, these were supplemented with five in-house compounds, two of which were also shown to be GPR183 agonists. Taken together, our findings suggest that the agonist activity of this compound series is dictated by the substitution pattern of one of the two distal phenyl rings, which functions as a molecular efficacy-switch.


Asunto(s)
Descubrimiento de Drogas , Receptores Acoplados a Proteínas G , Humanos , Estructura Molecular , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Relación Estructura-Actividad
4.
Structure ; 29(7): 679-693.e6, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33891864

RESUMEN

The glucose-dependent insulinotropic polypeptide (GIP) is a 42-residue metabolic hormone that is actively being targeted for its regulatory role of glycemia and energy balance. Limited structural data of its receptor has made ligand design tedious. This study investigates the structure and function of the GIP receptor (GIPR), using a homology model based on the GLP-1 receptor. Molecular dynamics combined with in vitro mutational data were used to pinpoint residues involved in ligand binding and/or receptor activation. Significant differences in binding mode were identified for the naturally occurring agonists GIP(1-30)NH2 and GIP(1-42) compared with high potency antagonists GIP(3-30)NH2 and GIP(5-30)NH2. Residues R1832.60, R1902.67, and R3005.40 are shown to be key for activation of the GIPR, and evidence suggests that a disruption of the K293ECL2-E362ECL3 salt bridge by GIPR antagonists strongly reduces GIPR activation. Combinatorial use of these findings can benefit rational design of ligands targeting the GIPR.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón/química , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/metabolismo , Sitios de Unión , Polipéptido Inhibidor Gástrico/metabolismo , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Conformación Proteica , Receptores de la Hormona Gastrointestinal/antagonistas & inhibidores , Receptores de la Hormona Gastrointestinal/genética , Homología Estructural de Proteína
5.
Curr Opin Cell Biol ; 63: 38-48, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31951921

RESUMEN

Key metabolites act through specific G protein-coupled receptors (GPCRs) as extracellular signals of fuel availability and metabolic stress. Here, we focus on the succinate receptor SUCNR1/GPR91 and the long chain fatty acid receptor FFAR1/GPR40, for which 3D structural information is available. Like other small polar acidic metabolites, succinate is excreted from the cell by transporter proteins to bind to an extracellular, solvent-exposed pocket in SUCNR1. Non-metabolite pharmacological tool compounds are currently being designed based on the structure of the SUCNR1 binding pocket. In FFAR1, differently signaling lipid mimetics bind in two distinct membrane-exposed sites corresponding to each of the lipid bilayer leaflets. Conceivably endogenous lipid ligands gain access to these sites by way of the membrane and probably occupy both sites under physiological circumstances. Design of polar agonists for a dynamic, solvent-exposed pocket in FFAR1 underlines the possibility of structure-based approaches for development of novel tool compounds even in lipid sensing metabolite GPCRs.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Humanos , Ligandos , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
6.
Front Immunol ; 10: 2156, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31572374

RESUMEN

Chemokine receptors play important roles in the immune system and are linked to several human diseases. Targeting chemokine receptors have so far shown very little success owing to, to some extent, the promiscuity of the immune system and the high degree of biased signaling within it. CCR7 and its two endogenous ligands display biased signaling and here we investigate the differences between the two ligands, CCL21 and CCL19, with respect to their biased activation of CCR7. We use bystander bioluminescence resonance energy transfer (BRET) based signaling assays and Transwell migration assays to determine (A) how swapping of domains between the two ligands affect their signaling patterns and (B) how receptor mutagenesis impacts signaling. Using chimeric ligands we find that the chemokine core domains are central for determining signaling outcome as the lack of ß-arrestin-2 recruitment displayed by CCL21 is linked to its core domain and not N-terminus. Through a mutagenesis screen, we identify the extracellular domains of CCR7 to be important for both ligands and show that the two chemokines interact differentially with extracellular loop 2 (ECL-2). By using in silico modeling, we propose a link between ECL-2 interaction and CCR7 signal transduction. Our mutagenesis study also suggests a lysine in the top of TM3, K1303.26, to be important for G protein signaling, but not ß-arrestin-2 recruitment. Taken together, the bias in CCR7 between CCL19 and CCL21 relies on the chemokine core domains, where interactions with ECL-2 seem particularly important. Moreover, TM3 selectively regulates G protein signaling as found for other chemokine receptors.


Asunto(s)
Quimiocina CCL19/inmunología , Quimiocina CCL21/inmunología , Receptores CCR7/inmunología , Transducción de Señal/inmunología , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células CHO , Línea Celular Tumoral , Quimiocina CCL19/genética , Quimiocina CCL19/metabolismo , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Cricetinae , Cricetulus , Humanos , Ligandos , Ratones , Mutación , Unión Proteica , Receptores CCR7/genética , Receptores CCR7/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal/genética
7.
Proc Natl Acad Sci U S A ; 116(14): 7123-7128, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30872479

RESUMEN

The long-chain fatty acid receptor FFAR1/GPR40 binds agonists in both an interhelical site between the extracellular segments of transmembrane helix (TM)-III and TM-IV and a lipid-exposed groove between the intracellular segments of these helices. Molecular dynamics simulations of FFAR1 with agonist removed demonstrated a major rearrangement of the polar and charged anchor point residues for the carboxylic acid moiety of the agonist in the interhelical site, which was associated with closure of a neighboring, solvent-exposed pocket between the extracellular poles of TM-I, TM-II, and TM-VII. A synthetic compound designed to bind in this pocket, and thereby prevent its closure, was identified through structure-based virtual screening and shown to function both as an agonist and as an allosteric modulator of receptor activation. This discovery of an allosteric agonist for a previously unexploited, dynamic pocket in FFAR1 demonstrates both the power of including molecular dynamics in the drug discovery process and that this specific, clinically proven, but difficult, antidiabetes target can be addressed by chemotypes different from existing ligands.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/efectos de los fármacos , Sitio Alostérico , Benzofuranos/antagonistas & inhibidores , Sitios de Unión , Cristalografía por Rayos X , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Conformación Proteica , Receptores Acoplados a Proteínas G/genética , Sulfonas/antagonistas & inhibidores
8.
ACS Pharmacol Transl Sci ; 2(6): 429-441, 2019 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-32259075

RESUMEN

Chemokines undergo post-translational modification such as N-terminal truncations. Here, we describe how N-terminal truncation of full length CCL3(1-70) affects its activity at CCR1. Truncated CCL3(5-70) has 10-fold higher potency and enhanced efficacy in ß-arrestin recruitment, but less than 2-fold increased potencies in G protein signaling determined by calcium release, cAMP and IP3 formation. Small positive ago-allosteric ligands modulate the two CCL3 variants differently as the metal ion chelator bipyridine in complex with zinc (ZnBip) enhances the binding of truncated, but not full length CCL3, while a size-increase of the chelator to a chloro-substituted terpyridine (ZnClTerp), eliminates its allosteric, but not agonistic action. By employing a series of receptor mutants and in silico modeling we describe residues of importance for chemokine and small molecule binding. Notably, the chemokine receptor-conserved Glu2877.39 interacts with the N-terminal amine of truncated CCL3(5-70) and with Zn2+ of ZnBip, thereby bridging their binding sites and enabling the positive allosteric effect. Our study emphasizes that small allosteric molecules may act differently toward chemokine variants and thus selectively modulate interactions of specific chemokine subsets with their cognate receptors.

9.
Proc Natl Acad Sci U S A ; 115(43): E10255-E10264, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30301804

RESUMEN

Biased signaling has been suggested as a means of selectively modulating a limited fraction of the signaling pathways for G-protein-coupled receptor family members. Hence, biased ligands may allow modulation of only the desired physiological functions and not elicit undesired effects associated with pharmacological treatments. The ghrelin receptor is a highly sought antiobesity target, since the gut hormone ghrelin in humans has been shown to increase both food intake and fat accumulation. However, it also modulates mood, behavior, growth hormone secretion, and gastric motility. Thus, blocking all pathways of this receptor may give rise to potential side effects. In the present study, we describe a highly promiscuous signaling capacity for the ghrelin receptor. We tested selected ligands for their ability to regulate the various pathways engaged by the receptor. Among those, a biased ligand, YIL781, was found to activate the Gαq/11 and Gα12 pathways selectively without affecting the engagement of ß-arrestin or other G proteins. YIL781 was further characterized for its in vivo physiological functions. In combination with the use of mice in which Gαq/11 was selectively deleted in the appetite-regulating AgRP neurons, this biased ligand allowed us to demonstrate that selective blockade of Gαq/11, without antagonism at ß-arrestin or other G-protein coupling is sufficient to decrease food intake.


Asunto(s)
Ghrelina/metabolismo , Receptores de Ghrelina/metabolismo , Animales , Ingestión de Alimentos/efectos de los fármacos , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Ligandos , Masculino , Ratones , Piperidinas/farmacología , Quinazolinonas/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , beta-Arrestinas/metabolismo
10.
Sci Rep ; 8(1): 10010, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29968758

RESUMEN

The succinate receptor 1 (SUCNR1) is a receptor for the metabolite succinate, which functions as a metabolic stress signal in the liver, kidney, adipose tissue and the retina. However, potent non-metabolite tool compounds are needed to reveal the physiological role and pharmacological potential of SUCNR1. Recently, we published the discovery of a computationally receptor-structure derived non-metabolite SUCNR1 agonist series with high target selectivity. We here report our structure-activity exploration and optimisation that has resulted in the development of agonists with nanomolar potency and excellent solubility and stability properties in a number of in vitro assays. Ligand-guided receptor models with high discriminative power between binding of active and inactive compounds were developed for design of novel chemotypes.


Asunto(s)
Receptores Acoplados a Proteínas G/agonistas , Receptores Purinérgicos P2Y1/metabolismo , Relación Estructura-Actividad , Animales , Cristalografía por Rayos X , Humanos , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Receptores Purinérgicos P2Y1/ultraestructura , Ácido Succínico/metabolismo
11.
Eur J Med Chem ; 155: 244-254, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29886326

RESUMEN

US28 is a broad-spectrum constitutively active G protein-coupled receptor encoded by the human cytomegalovirus (HCMV). It binds and scavenges multiple CC-chemokines as well as CX3CL1 (fractalkine) by constitutive receptor endocytosis to escape immune surveillance. We herein report the design and characterization of a novel library of US28-acting commercially available ligands based on the molecular descriptors of two previously reported US28-acting structures. Among these, we identify compounds capable of selectively recognizing CCL2-and CCL4-, but not CX3CL1-induced receptor conformations. Moreover, we find a direct correlation between the binding properties of small molecule ligands to CCL-induced conformations at the wild-type receptor and functional activity at the C-terminal truncated US28Δ300. As US28Δ300 is devoid of arrestin-recruitment and endocytosis, this highlights the potential usefulness of this construct in future drug discovery efforts aimed at specific US28 conformations. The new scaffolds identified herein represent valuable starting points for the generation of novel anti-HCMV therapies targeting the virus-encoded chemokine receptor US28 in a conformational-selective manner.


Asunto(s)
Receptores de Quimiocina/agonistas , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Virales/agonistas , Células Cultivadas , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Células HEK293 , Humanos , Ligandos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
12.
Cell Metab ; 27(2): 273-275, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29414682

RESUMEN

It is known but generally unappreciated that the fatty acid receptor FFAR1 (GPR40) is responsible for a major part of glucose-induced insulin secretion. This puzzling fact is now explained by Tunaru et al. (2018), who demonstrate that glucose-induced 20-hydroxyeicosatetraenoic acid (20-HETE) amplifies insulin secretion through autocrine activation of FFAR1.


Asunto(s)
Glucosa , Insulina , Ácidos Hidroxieicosatetraenoicos , Secreción de Insulina , Islotes Pancreáticos , Receptores Acoplados a Proteínas G
13.
Br J Pharmacol ; 174(13): 2031-2042, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28369721

RESUMEN

BACKGROUND AND PURPOSE: The GPCR Epstein-Barr virus-induced gene 2 (EBI2, also known as GPR183) is activated by oxysterols and plays a pivotal role in the regulation of B cell migration during immune responses. While the molecular basis of agonist binding has been addressed in several studies, the concept of biased agonism of the EBI2 receptor has not been explored. EXPERIMENTAL APPROACH: We investigated the effects of the EBI2 endogenous agonist 7α,25-dihydroxycholesterol (7α,25-OHC) on G protein-dependent and -independent pathways as well as sodium ion allosterism using site-directed mutagenesis and functional studies. Moreover, we generated a homology model of the EBI2 receptor to investigate the structural basis of the allosteric modulation by sodium. KEY RESULTS: Residue N114, located in the middle of transmembrane-III at position III:11/3.35, was found to function as an efficacy switch. Thus, substituting N114 with an alanine (N114A) completely abolished heterotrimeric G protein subunit Gi α activation by 7α,25-OHC even though the specific binding of [3 H]-7α,25-OHC increased. In contrast, the N114A mutant was still able to recruit ß-arrestin and even had an enhanced potency (18.7-fold) compared with EBI2 wild type. Sodium had a negative allosteric effect on oxysterol binding that was mediated via N114, verifying the key role of N114. This was further supported by molecular modelling of the ion binding site based on a EBI2 receptor homology model. CONCLUSIONS AND IMPLICATIONS: Collectively, our data point to N114 as a key residue for EBI2 signalling controlling the balance between G protein-dependent and -independent pathways and facilitating sodium binding.


Asunto(s)
Hidroxicolesteroles/farmacología , Receptores Acoplados a Proteínas G/agonistas , Regulación Alostérica/efectos de los fármacos , Animales , Unión Competitiva/efectos de los fármacos , Células CHO , Células Cultivadas , Cricetulus , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Sodio/farmacología , Relación Estructura-Actividad
14.
Chem Biol Drug Des ; 89(3): 289-296, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27569905

RESUMEN

The human cytomegalovirus-encoded G protein-coupled receptor US28 is a constitutively active receptor, which can recognize various chemokines. Despite the recent determination of its 2.9 Å crystal structure, potent and US28-specific tool compounds are still scarce. Here, we used structural information from a refined US28:VUF2274 complex for virtual screening of >12 million commercially available small molecule compounds. Using a combined receptor- and ligand-based approach, we tested 98 of the top 0.1% ranked compounds, revealing novel chemotypes as compared to the ~1.45 million known ligands in the ChEMBL database. Two compounds were confirmed as agonist and inverse agonist, respectively, in both IP accumulation and Ca2+ mobilization assays. The screening setup presented in this work is computationally inexpensive and therefore particularly useful in an academic setting as it enables simultaneous testing in binding as well as in different functional assays and/or species without actual chemical synthesis.


Asunto(s)
Receptores de Quimiocina/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Virales/química , Animales , Células COS/efectos de los fármacos , Calcio/metabolismo , Diseño de Fármacos , Evaluación Preclínica de Medicamentos/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Ligandos , Modelos Moleculares , Piperidinas/química , Piperidinas/metabolismo , Receptores de Quimiocina/agonistas , Receptores de Quimiocina/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Proteínas Virales/agonistas , Proteínas Virales/metabolismo
15.
Mol Inform ; 35(1): 19-24, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-27491650

RESUMEN

The neurotensin receptor 1 (NTSR1) belongs to the family of 7TM, G protein-coupled receptors, and is activated by the 13-amino-acid peptide neurotensin (NTS) that has been shown to play important roles in neurological disorders and the promotion of cancer cells. Recently, a high-resolution x-ray crystal structure of NTSR1 in complex with NTS8-13 has been determined, providing novel insights into peptide ligand recognition by 7TM receptors. SR48692, a potent and selective small molecule antagonist has previously been used extensively as a tool compound to study NTSR1 receptor signaling properties. To investigate the binding mode of SR48692 and other small molecule compounds to NTSR1, we applied an Automated Ligand-guided Backbone Ensemble Receptor Optimization protocol (ALiBERO), taking receptor flexibility and ligand knowledge into account. Structurally overlapping binding poses for SR48692 and NTS8-13 were observed, despite their distinct chemical nature and inverse pharmacological profiles. The optimized models showed significantly improved ligand recognition in a large-scale virtual screening assessment compared to the crystal structure. Our models provide new insights into small molecule ligand binding to NTSR1 and could facilitate the structure-based design of non-peptide ligands for the evaluation of the pharmacological potential of NTSR1 in neurological disorders and cancer.


Asunto(s)
Biología Computacional/métodos , Simulación por Computador , Receptores de Neurotensina/agonistas , Receptores de Neurotensina/antagonistas & inhibidores , Sitios de Unión , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Neurotensina/química , Neurotensina/farmacología , Péptidos/química , Péptidos/farmacología , Unión Proteica , Dominios Proteicos , Pirazoles/química , Pirazoles/farmacología , Quinolinas/química , Quinolinas/farmacología , Receptores de Neurotensina/química , Transducción de Señal/efectos de los fármacos
16.
J Biol Chem ; 291(31): 16208-20, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27226537

RESUMEN

Chemokine receptors play important roles in the immune system and are linked to several human diseases. The initial contact of chemokines with their receptors depends on highly specified extracellular receptor features. Here we investigate the importance of conserved extracellular disulfide bridges and aromatic residues in extracellular loop 2 (ECL-2) for ligand binding and activation in the chemokine receptor CCR8. We used inositol 1,4,5-trisphosphate accumulation and radioligand binding experiments to determine the impact of receptor mutagenesis on both chemokine and small molecule agonist and antagonist binding and action in CCR8. We find that the seven-transmembrane (TM) receptor conserved disulfide bridge (7TM bridge) linking transmembrane helix III (TMIII) and ECL-2 is crucial for chemokine and small molecule action, whereas the chemokine receptor conserved disulfide bridge between the N terminus and TMVII is needed only for chemokines. Furthermore, we find that two distinct aromatic residues in ECL-2, Tyr(184) (Cys + 1) and Tyr(187) (Cys + 4), are crucial for binding of the CC chemokines CCL1 (agonist) and MC148 (antagonist), respectively, but not for small molecule binding. Finally, using in silico modeling, we predict an aromatic cluster of interaction partners for Tyr(187) in TMIV (Phe(171)) and TMV (Trp(194)). We show in vitro that these residues are crucial for the binding and action of MC148, thus supporting their participation in an aromatic cluster with Tyr(187) This aromatic cluster appears to be present in a large number of CC chemokine receptors and thereby could play a more general role to be exploited in future drug development targeting these receptors.


Asunto(s)
Quimiocina CCL1/química , Quimiocinas CC/química , Disulfuros/química , Inositol 1,4,5-Trifosfato/química , Receptores CCR8/química , Proteínas Virales/química , Animales , Células COS , Quimiocina CCL1/metabolismo , Quimiocinas CC/metabolismo , Chlorocebus aethiops , Disulfuros/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores CCR8/genética , Receptores CCR8/metabolismo , Proteínas Virales/metabolismo
17.
Mol Metab ; 4(1): 3-14, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25685685

RESUMEN

OBJECTIVES: GPR40 (FFAR1), a clinically proven anti-diabetes target, is a Gq-coupled receptor for long chain fatty acids (LCFA) stimulating insulin secretion directly and mediating a major part of the dietary triglyceride-induced secretion of the incretins GLP-1 and GIP. In phase-II studies the GPR40 agonist TAK-875 decreased blood glucose but surprisingly without stimulating incretins. METHODS AND RESULTS: Here we find that GPR40 can signal through not only Gq and IP3 but also Gs and cAMP when stimulated with certain agonists such as AM-1638 and AM-5262 in contrast to the endogenous LCFA ligands and agonists such as TAK-875 and AM-837, which only signal through Gq. In competition binding against [3H]AM-1638 and [3H]L358 the Gq + Gs and the Gq-only agonists either competed for or showed positive cooperativity by increasing the binding of the two different radio-ligands, in opposite ways. Nevertheless, both the Gq-only and the Gq + Gs agonists all docked surprisingly well into the binding site for TAK-875 in the X-ray structure of GPR40. In murine intestinal primary cell-cultures the endogenous LCFAs and the Gq-only agonists stimulated GLP-1 secretion with rather poor efficacy as compared with the high efficacy Gq + Gs GPR40 agonists and a prototype GPR119 agonist. Similarly, in fasting both male and female mice the Gq + Gs agonists showed significantly higher efficacy than the Gq-only agonists in respect of increasing plasma GLP-1 and plasma GIP in a GPR40-dependent manner. CONCLUSIONS: It is concluded that stimulation of GPR40 by endogenous LCFAs or by Gq-only synthetic agonists result in a rather limited incretin response, whereas Gq + Gs GPR40 agonists stimulate incretin secretion robustly.

18.
Bioorg Med Chem Lett ; 25(4): 887-92, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25599839

RESUMEN

Kappa opioid receptor (KOR) is an important mediator of pain signaling and it is targeted for the treatment of various pains. Pharmacophore based mining of databases led to the identification of 2-aminobenzimidazole derivative as KOR agonists with selectivity over the other opioid receptors DOR and MOR. A short SAR exploration with the objective of identifying more polar and hence less brain penetrant agonists is described herewith. Modeling studies of the recently published structures of KOR, DOR and MOR are used to explain the receptor selectivity. The synthesis, biological evaluation and SAR of novel benzimidazole derivatives as KOR agonists are described. The in vivo proof of principle for anti-nociceptive effect with a lead compound from this series is exemplified.


Asunto(s)
Bencimidazoles/farmacología , Receptores Opioides kappa/agonistas , Secuencia de Aminoácidos , Simulación por Computador , Humanos , Datos de Secuencia Molecular , Receptores Opioides kappa/química , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...