Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 4(5): 8846-8851, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459972

RESUMEN

The α4/6ßδ-containing GABAA receptors are involved in a number of brain diseases. Despite the potential of a δ-selective imaging agent, no PET radioligand is currently available for in vivo imaging. Here, we report the characterization of DS2OMe (1) as a candidate radiotracer, 11C-labeling, and subsequent evaluation of [11C]DS2OMe in a domestic pig as a PET radioligand for visualization of the δ-containing GABAA receptors.

2.
Eur J Pharmacol ; 853: 247-255, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30930251

RESUMEN

The nonsteroidal anti-inflammatory drug (NSAID) niflumic acid, a fenamate in structure, has many molecular targets, one of them being specific subtypes of the main inhibitory ligand-gated anion channel, the GABAA receptor. Here, we report on the effects of other fenamates and other classes of NSAIDs on brain picrotoxinin-sensitive GABAA receptors, using an autoradiographic assay with [35S]TBPS as a ligand on mouse brain sections. We found that the other fenamates studied (flufenamic acid, meclofenamic acid, mefenamic acid and tolfenamic acid) affected the autoradiographic signal at low micromolar concentrations in a facilitatory-like allosteric fashion, i.e., without having affinity to the [35S]TBPS binding site. Unlike niflumic acid that shows clear preference for inhibiting cerebellar granule cell layer GABAA receptors, the other fenamates showed little brain regional selectivity, indicating that their actions are not receptor-subtype selective. Of the non-fenamate NSAIDs studied at 100 µM concentration, diclofenac induced the greatest inhibition of the binding, which is not surprising as it has close structural similarity with the potent fenamate meclofenamic acid. Using two-electrode voltage-clamp assays on Xenopus oocytes, the effect of niflumic acid was found to be dependent on the ß subunit variant and the presence of γ2 subunit in rat recombinant α1ß and α1ßγ2 GABAA receptors, with the ß1 allowing the niflumic acid inhibition and ß3 the stimulation of the receptor-mediated currents. In summary, the fenamate NSAIDs constitute an interesting class of compounds that could be used for development of potent GABAA receptor allosteric agonists with other targets to moderate inflammation, pain and associated anxiety/depression.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Fenamatos/farmacología , Receptores de GABA-A/metabolismo , Animales , Antiinflamatorios no Esteroideos/metabolismo , Fenómenos Electrofisiológicos/efectos de los fármacos , Fenamatos/metabolismo , Masculino , Ratas
3.
J Med Chem ; 61(5): 1951-1968, 2018 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-29451785

RESUMEN

δ-Selective compounds 1 and 2 (DS1, compound 22; DS2, compound 16) were introduced as functionally selective modulators of δ-containing GABA type A receptors (GABAAR). In our hands, [3H]EBOB-binding experiments with recombinant GABAAR and compound 22 showed no proof of δ-selectivity, although there was a minimally higher preference for the α4ß3δ and α6ß2/3δ receptors with respect to potency. In order to delineate the structural determinants of δ preferences, we synthesized 25 derivatives of DS1 and DS2, and investigated their structure-activity relationships (SAR). Four of our derivatives showed selectivity for α6ß3δ receptors (29, 38, 39, and 41). For all of them, the major factors that distinguished them from compound 22 were variations at the para-positions of their benzamide groups. However, two compounds (29 and 39), when tested in the presence of GABA, revealed effects at several additional GABAAR. The newly synthesized compounds will still serve as useful tools to investigate α6ß3δ receptors.


Asunto(s)
Antagonistas de Receptores de GABA-A/química , Imidazoles/metabolismo , Piridinas/metabolismo , Receptores de GABA-A/metabolismo , Humanos , Imidazoles/química , Imidazoles/farmacología , Concentración 50 Inhibidora , Subunidades de Proteína/metabolismo , Piridinas/química , Piridinas/farmacología , Relación Estructura-Actividad
4.
J Med Chem ; 60(16): 7199-7205, 2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28749691

RESUMEN

As a cellular bile acid sensor, farnesoid X receptor (FXR) participates in regulation of bile acid, lipid and glucose homeostasis, and liver protection. Clinical results have validated FXR as therapeutic target in hepatic and metabolic diseases. To date, potent FXR agonists share a negatively ionizable function that might compromise their pharmacokinetic distribution and behavior. Here we report the development and characterization of a high-affinity FXR modulator not comprising an acidic residue.


Asunto(s)
Imidazoles/farmacología , Piridinas/farmacología , Receptores Citoplasmáticos y Nucleares/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP , Transportadoras de Casetes de Unión a ATP/genética , Animales , Colesterol 7-alfa-Hidroxilasa/genética , Estabilidad de Medicamentos , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Imidazoles/síntesis química , Imidazoles/química , Imidazoles/metabolismo , Masculino , Proteínas de Transporte de Membrana/genética , Simulación del Acoplamiento Molecular , PPAR alfa/genética , Piridinas/síntesis química , Piridinas/química , Piridinas/metabolismo , Ratas Sprague-Dawley , Receptores Citoplasmáticos y Nucleares/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Relación Estructura-Actividad , Zolpidem
5.
Front Pharmacol ; 7: 403, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27833556

RESUMEN

Endogenous neurosteroids and neuroactive steroids have potent and widespread actions on the brain via inhibitory GABAA receptors. In recombinant receptors and genetic mouse models their actions depend on the α, ß, and δ subunits of the receptor, especially on those that form extrasynaptic GABAA receptors responsible for non-synaptic (tonic) inhibition, but they also act on synaptically enriched γ2 subunit-containing receptors and even on αß binary receptors. Here we tested whether behavioral sensitivity to the neuroactive steroid agonist 5ß-pregnan-3α-ol-20-one is altered in genetically engineered mouse models that have deficient GABAA receptor-mediated synaptic inhibition in selected neuronal populations. Mouse lines with the GABAA receptor γ2 subunit gene selectively deleted either in parvalbumin-containing cells (including cerebellar Purkinje cells), cerebellar granule cells, or just in cerebellar Purkinje cells were trained on the accelerated rotating rod and then tested for motor impairment after cumulative intraperitoneal dosing of 5ß-pregnan-3α-ol-20-one. Motor-impairing effects of 5ß-pregnan-3α-ol-20-one were strongly increased in all three mouse models in which γ2 subunit-dependent synaptic GABAA responses in cerebellar neurons were genetically abolished. Furthermore, rescue of postsynaptic GABAA receptors in Purkinje cells normalized the effect of the steroid. Anxiolytic/explorative effects of the steroid in elevated plus maze and light:dark exploration tests in mice with Purkinje cell γ2 subunit inactivation were similar to those in control mice. The results suggest that, when the deletion of γ2 subunit has removed synaptic GABAA receptors from the specific cerebellar neuronal populations, the effects of neuroactive steroids solely on extrasynaptic αß or αßδ receptors lead to enhanced changes in the cerebellum-generated behavior.

6.
Stress ; 19(2): 235-47, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27023221

RESUMEN

Childhood stress and trauma are associated with substance use disorders in adulthood, but the neurological changes that confer increased vulnerability are largely unknown. In this study, maternal separation (MS) stress, restricted to the pre-weaning period, was used as a model to study mechanisms of protracted effects of childhood stress/traumatic experiences on binge drinking and impulsivity. Using an operant self-administration model of binge drinking and a delay discounting assay to measure impulsive-like behavior, we report that early life stress due to MS facilitated acquisition of binge drinking and impulsivity during adulthood in rats. Previous studies have shown heightened levels of corticotropin releasing factor (CRF) after MS, and here, we add that MS increased expression levels of GABA(A) α2 subunit in central stress circuits. To investigate the precise role of these circuits in regulating impulsivity and binge drinking, the CRF1 receptor antagonist antalarmin and the novel GABA(A) α2 subunit ligand 3-PBC were infused into the central amygdala (CeA) and medial prefrontal cortex (mPFC). Antalarmin and 3-PBC at each site markedly reduced impulsivity and produced profound reductions on binge-motivated alcohol drinking, without altering responding for sucrose. Furthermore, whole-cell patch-clamp studies showed that low concentrations of 3-PBC directly reversed the effect of relatively high concentrations of ethanol on α2ß3γ2 GABA(A) receptors, by a benzodiazepine site-independent mechanism. Together, our data provide strong evidence that maternal separation, i.e. early life stress, is a risk factor for binge drinking, and is linked to impulsivity, another key risk factor for excessive alcohol drinking. We further show that pharmacological manipulation of CRF and GABA receptor signaling is effective to reverse binge drinking and impulsive-like behavior in MS rats. These results provide novel insights into the role of the brain stress systems in the development of impulsivity and excessive alcohol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Conducta Impulsiva/fisiología , Privación Materna , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Receptores de GABA-A/metabolismo , Estrés Psicológico/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Animales , Condicionamiento Operante/efectos de los fármacos , Etanol/administración & dosificación , Femenino , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Pirimidinas/farmacología , Pirroles/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Riesgo , Autoadministración , Vitamina B 12/análogos & derivados
7.
J Proteomics ; 113: 154-61, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25281771

RESUMEN

Irradiation resistance is a major obstacle of head and neck squamous cell carcinoma (HNSCC) therapy, limiting treatment success and patient survival. The aim of our experiments was to identify irradiation-regulated proteins as potential drug targets. Two established HNSCC cell lines (HNSCCUM-01T and HNSCCUM-02T) were treated with a single 8Gy (Gray) fraction of irradiation. Changes in cellular protein expression were studied after 24h by means of 2D-electrophoresis and MALDI-TOF-mass spectrometry. Ninety-four differentially expressed proteins were identified. The expression levels of four proteins were regulated similarly in both cell lines after irradiation treatment, i.e., GRP78, PRDX, ACTC, and the heterogeneous nuclear ribonucleoprotein K (hnRNPK), suggesting a relevant role during irradiation response. hnRNPK as a p53 interacting protein was verified by Western blotting and immunocytochemical staining as well as functionally analyzed. Knock-down by the use of siRNA resulted in only slightly reduced viability, however, migratory activity was strongly reduced. Combined application of siRNA against hnRNPK and irradiation reduced migration almost completely. We conclude that hnRNPK is potentially implicated in the radiogenic response of HNSCC. The inhibition of hnRNPK might reduce the metastasizing potential of HNSCC especially in combination with irradiation and suggest that this molecule should be further evaluated in this context. BIOLOGICAL SIGNIFICANCE: We showed completely impaired migration of irradiated hnRNPK-knock-out HNSCC cells, suggesting this molecule as a potential drug target in combined treatment schedules.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Movimiento Celular/efectos de la radiación , Rayos gamma , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Neoplasias de Cabeza y Cuello/metabolismo , Proteínas de Neoplasias/metabolismo , Ribonucleoproteínas/biosíntesis , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/radioterapia , Línea Celular Tumoral , Chaperón BiP del Retículo Endoplásmico , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/radioterapia , Ribonucleoproteína Heterogénea-Nuclear Grupo K , Humanos , Metástasis de la Neoplasia , Proteómica
8.
Bioorg Med Chem ; 23(3): 612-23, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25541203

RESUMEN

In this study we synthesized four different (18)F-labeling precursors for the visualization of the monoamino oxidase A using harmol derivatives. Whereas two are for prosthetic group labeling using [(18)F]fluoro-d2-methyl tosylate and 2-[(18)F]fluoroethyl-tosylate, the other three precursors are for direct nucleophilic (18)F-labeling. Additionally the corresponding reference compounds were synthesized. The syntheses of [(18)F]fluoro-d2-methyl-harmol and 2-[(18)F]fluoroethyl-harmol were carried out using harmol as starting material. For direct nucleophilic (18)F-labeling of the tracers carrying oligoethyled spacers (PEG), a toluenesulfonyl leaving group was employed. The radiolabeling, purification and formulation for each tracer was optimized and evaluated in vitro and in vivo. Stability tests in human serum showed that all tracers were stable over the observation period of 60 min. µPET studies using of the synthesized tracers revealed that the tracers carrying PEG spacers showed no sufficient brain uptake. Consequently, the (18)F-fuoro alkylated tracers [(18)F]fluoro-d2-methyl-harmol and 2-[(18)F]fluoroethyl-harmol were further evaluated showing SUVs in the brain of 1.0±0.2 g/mL and 3.4±0.5 g/mL after 45 min, respectively. In blockade studies the selectivity and specificity of both tracers were demonstrated. However, for [(18)F]fluoro-d2-methyl-harmol a rapid washout from the brain was also observed. In vitro binding assays revealed that 2-[(18)F]fluoroethyl-harmol (IC50=0.54±0.06 nM) has a higher affinity than the (18)F-fluoro-d2-methylated ligand (IC50=12.2±0.6 nM), making 2-[(18)F]fluoroethyl-harmol superior to the other evaluated compounds and a promising tracer for PET imaging of the MAO A.


Asunto(s)
Carbolinas/química , Radioisótopos de Flúor/química , Monoaminooxidasa/química , Animales , Carbolinas/sangre , Carbolinas/metabolismo , Estabilidad de Medicamentos , Humanos , Técnicas In Vitro , Marcaje Isotópico , Monoaminooxidasa/metabolismo , Tomografía de Emisión de Positrones/métodos , Radiofármacos/sangre , Radiofármacos/síntesis química , Radiofármacos/química , Ratas , Ratas Sprague-Dawley
9.
Eur J Pharmacol ; 666(1-3): 111-21, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21616065

RESUMEN

The potent sedative-hypnotic zolpidem and the convulsant methyl-6,7-dimethoxy-4-ethyl-ß-carboline-3-carboxylate (DMCM) act primarily by binding to the benzodiazepine site of the main inhibitory neurotransmitter receptor, the pentameric γ-aminobutyric acid type A receptor (GABA(A)). This binding depends critically on the wild-type F77 residue of the GABA(A) receptor γ2 subunit. Mice with γ2 subunit F77I point mutation (γ2I77 mouse line) lose the high-affinity nanomolar binding of these ligands as well as their most robust behavioral actions at low doses. Interestingly, the γ2I77 mice offer a tool to study the actions of these substances mediated via other possible binding sites of the GABA(A) receptor. In ligand autoradiographic experiments, we discovered in γ2I77 mouse brain sections a significant amount of residual non-γ2 subunit-dependent benzodiazepine site binding enriched to the striatum and septum. Zolpidem only weakly affected this residual binding at micromolar concentrations, and only a high zolpidem dose (≥ 40 mg/kg) caused sedation and deficits in motor coordination in γ2I77 mice. DMCM had an agonistic action through a secondary, low-affinity non-benzodiazepine binding site of the GABA(A) receptor in the forebrain of γ2I77 mice, and this drug also fully displaced the residual benzodiazepine-site labeling. In behavioral tests, a high dose (20mg/kg) of DMCM was sedative and modulated fear learning. DMCM, but not zolpidem, acted as an agonist in recombinant GABA(A) α1/6ß3 receptors studied using ligand binding and electrophysiological assays. Our results highlight the less well-known actions of high doses of DMCM and zolpidem that are not mediated via the γ2 subunit-containing benzodiazepine site of the GABA(A) receptor.


Asunto(s)
Benzodiazepinas/metabolismo , Carbolinas/metabolismo , Carbolinas/farmacología , Piridinas/metabolismo , Piridinas/farmacología , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Animales , Autorradiografía , Azidas/farmacología , Conducta Animal/efectos de los fármacos , Benzodiazepinas/farmacología , Sitios de Unión/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Convulsivantes/metabolismo , Convulsivantes/farmacología , Femenino , Células HEK293 , Humanos , Hipnóticos y Sedantes/metabolismo , Hipnóticos y Sedantes/farmacología , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Zolpidem
10.
Front Neurosci ; 5: 3, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21270945

RESUMEN

Ethyl alcohol (ethanol) has many molecular targets in the nervous system, its potency at these sites being low compared to those of sedative drugs. This has made it difficult to discover ethanol's binding site(s). There are two putative binding sites at γ-aminobutyric acid (GABA) type A receptor subtypes for the proposed ethanol antagonist Ro 15-4513, the established γ2 subunit-dependent benzodiazepine site and the recently reported δ subunit-dependent Ro 15-4513/ethanol binding site. Here, we aimed at clarifying the in vivo role of Ro 15-4513 at these two sites. We found that the antagonism of ethanol actions by Ro 15-4513 in wildtype mice was dependent on the test: an open field test showed that light sedation induced by 1.5-1.8 g/kg ethanol was sensitive to Ro 15-4513, whereas several tests for ethanol-induced anxiolytic effects showed that the ethanol-induced effects were insensitive to Ro 15-4513. Antagonism of ethanol-induced sedation by Ro 15-4513 was unaffected in GABA(A) receptor δ subunit knockout mice. By contrast, when testing the GABA(A) receptor γ2 subunit F77I knock-in mouse line (γ2I77 mice) with its strongly reduced affinity of the benzodiazepine sites for Ro 15-4513, we found that the ethanol-induced sedation was no longer antagonized by Ro 15-4513. Indeed, γ2I77 mice had only a small proportion of high-affinity binding of [(3)H]Ro 15-4513 left as compared to wildtype mice, especially in the caudate-putamen and septal areas, but these residual sites are apparently not involved in ethanol antagonism. In conclusion, we found that Ro 15-4513 abolished the sedative effect of ethanol by an action on γ2 subunit-dependent benzodiazepine sites.

11.
PLoS One ; 5(7): e11464, 2010 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-20628651

RESUMEN

BACKGROUND: Parkinson's disease (PD), the second most frequent neurodegenerative disorder at old age, can be caused by elevated expression or the A53T missense mutation of the presynaptic protein alpha-synuclein (SNCA). PD is characterized pathologically by the preferential vulnerability of the dopaminergic nigrostriatal projection neurons. METHODOLOGY/PRINCIPAL FINDINGS: Here, we used two mouse lines overexpressing human A53T-SNCA and studied striatal dysfunction in the absence of neurodegeneration to understand early disease mechanisms. To characterize the progression, we employed young adult as well as old mice. Analysis of striatal neurotransmitter content demonstrated that dopamine (DA) levels correlated directly with the level of expression of SNCA, an observation also made in SNCA-deficient (knockout, KO) mice. However, the elevated DA levels in the striatum of old A53T-SNCA overexpressing mice may not be transmitted appropriately, in view of three observations. First, a transcriptional downregulation of the extraneural DA degradation enzyme catechol-ortho-methytransferase (COMT) was found. Second, an upregulation of DA receptors was detected by immunoblots and autoradiography. Third, extensive transcriptome studies via microarrays and quantitative real-time RT-PCR (qPCR) of altered transcript levels of the DA-inducible genes Atf2, Cb1, Freq, Homer1 and Pde7b indicated a progressive and genotype-dependent reduction in the postsynaptic DA response. As a functional consequence, long term depression (LTD) was absent in corticostriatal slices from old transgenic mice. CONCLUSIONS/SIGNIFICANCE: Taken together, the dysfunctional neurotransmission and impaired synaptic plasticity seen in the A53T-SNCA overexpressing mice reflect early changes within the basal ganglia prior to frank neurodegeneration. As a model of preclinical stages of PD, such insights may help to develop neuroprotective therapeutic approaches.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Plasticidad Neuronal/fisiología , alfa-Sinucleína/metabolismo , Factor de Transcripción Activador 2/genética , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Proteínas Portadoras/genética , Cromatografía Líquida de Alta Presión , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 7/genética , Electrofisiología , Proteínas de Andamiaje Homer , Humanos , Hibridación Fluorescente in Situ , Ratones , Ratones Noqueados , Ratones Mutantes , Proteínas Sensoras del Calcio Neuronal/genética , Plasticidad Neuronal/genética , Neuropéptidos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Ensayo de Radioinmunoprecipitación , Receptor Cannabinoide CB1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , alfa-Sinucleína/genética
12.
Nucl Med Biol ; 37(4): 487-95, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20447561

RESUMEN

INTRODUCTION: The serotonergic system, especially the 5-HT2A receptor, is involved in various diseases and conditions. It is a very interesting target for medicinal applications. METHODS: Two novel 5-HT2A tracers, namely, [(18)F]DD-1 and the enantiomeric pure (R)-[(18)F]MH.MZ, were radiolabeled by (18)F-fluoroalkylation of the corresponding desmethyl analogue. In vitro binding autoradiography on rat brain slices was performed to test the affinity and selectivity of these tracers. Moreover, first microPET experiments of (R)-[(18)F]MH.MZ were carried out in Sprague-Dawley rats. RESULTS: [(18)F]DD-1 (K(i)=3.23 nM) and (R)-[(18)F]MH.MZ (K(i)=0.72 nM) were (18)F-fluoroalkylated by the secondary synthon [(18)F]FETos in a radiochemical yield (RCY) of >70%. The final formulation for both tracers took no longer than 100 min with an overall RCY of approximately 40%. It provided [(18)F]tracers with a purity >96% and a typical specific activity of 25-35 GBq/mumol. Autoradiographic images of (R)-[(18)F]MH.MZ (5) and [(18)F]DD-1 (4) showed excellent visualization and selectivity of the 5-HT2A receptor for (R)-[(18)F]MH.MZ and less specific binding for [(18)F]DD-1. The binding potential (BP) of (R)-[(18)F]MH.MZ was determined to be 2.6 in the frontal cortex and 2.2 in the cortex (n=4), whereas the cortex-to-cerebellum ratio was determined to be 3.2 at steady state (n=4). Cortex-to-cerebellum ratios of (R)-[(18)F]MH.MZ were almost twice as much as compared with the racemic [(18)F]MH.MZ. Thereby, equal levels of specific activities were used. High uptake could be demonstrated in cortex regions. CONCLUSION: Labeling of both novel tracers was carried out in high RCY. Autoradiography revealed (R)-[(18)F]MH.MZ as a very selective and affine 5-HT2A tracer (K(i)=0.72 nM), whereas [(18)F]DD-1 showed no reasonable distribution pattern on autoradiographic sections. Moreover, results from microPET scans of (R)-[(18)F]MH.MZ hint on improved molecular imaging characteristics compared with those of [(18)F]MH.MZ. Therefore, (R)-[(18)F]MH.MZ appears to be a highly potent and selective serotonergic PET ligand in small animals.


Asunto(s)
Radioisótopos de Flúor , Fluorobencenos/química , Imagen Molecular/métodos , Piperidinas/química , Receptor de Serotonina 5-HT2A/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2 , Animales , Autorradiografía , Fluorobencenos/farmacología , Masculino , Piperidinas/farmacología , Tomografía de Emisión de Positrones , Trazadores Radiactivos , Radioquímica , Ratas , Ratas Sprague-Dawley
13.
Nucl Med Biol ; 36(4): 447-54, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19423013

RESUMEN

INTRODUCTION: The 5-HT(2A) receptor is one of the most interesting targets within the serotonergic system because it is involved in a number of important physiological processes and diseases. METHODS: [(18)F]MH.MZ, a 5-HT(2A) antagonistic receptor ligand, is labeled by (18)F-fluoroalkylation of the corresponding desmethyl analogue MDL 105725 with 2-[(18)F]fluoroethyltosylate ([(18)F]FETos). In vitro binding experiments were performed to test selectivity toward a broad spectrum of neuroreceptors by radioligand binding assays. Moreover, first micro-positron emission tomography (microPET) experiments, ex vivo organ biodistribution, blood cell and protein binding and brain metabolism studies of [(18)F]MH.MZ were carried out in rats. RESULTS: [(18)F]MH.MZ showed a K(i) of 3 nM toward the 5-HT(2A) receptor and no appreciable affinity for a variety of receptors and transporters. Ex vivo biodistribution as well as microPET showed highest brain uptake at approximately 5 min p.i. and steady state after approximately 30 min p.i. While [(18)F]MH.MZ undergoes extensive first-pass metabolism which significantly reduces its bioavailability, it is insignificantly metabolized within the brain. The binding potential in the rat frontal cortex is 1.45, whereas the cortex to cerebellum ratio was determined to be 2.7 after approximately 30 min. CONCLUSION: Results from microPET measurements of [(18)F]MH.MZ are in no way inferior to data known for [(11)C]MDL 100907 at least in rats. [(18)F]MH.MZ appears to be a highly potent and selective serotonergic PET ligand in small animals.


Asunto(s)
Fluorobencenos/metabolismo , Piperidinas/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Animales , Autorradiografía , Encéfalo/citología , Encéfalo/metabolismo , Fluorobencenos/sangre , Fluorobencenos/síntesis química , Fluorobencenos/farmacocinética , Humanos , Masculino , Piperidinas/sangre , Piperidinas/síntesis química , Piperidinas/farmacocinética , Tomografía de Emisión de Positrones , Radiactividad , Ratas , Receptor de Serotonina 5-HT2A/análisis , Distribución Tisular
14.
J Med Chem ; 51(15): 4430-48, 2008 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-18651727

RESUMEN

Drugs used to treat various disorders target GABA A receptors. To develop alpha subunit selective compounds, we synthesized 5-(4-piperidyl)-3-isoxazolol (4-PIOL) derivatives. The 3-isoxazolol moiety was substituted by 1,3,5-oxadiazol-2-one, 1,3,5-oxadiazol-2-thione, and substituted 1,2,4-triazol-3-ol heterocycles with modifications to the basic piperidine substituent as well as substituents without basic nitrogen. Compounds were screened by [(3)H]muscimol binding and in patch-clamp experiments with heterologously expressed GABA A alpha ibeta 3gamma 2 receptors (i = 1-6). The effects of 5-aminomethyl-3 H-[1,3,4]oxadiazol-2-one 5d were comparable to GABA for all alpha subunit isoforms. 5-piperidin-4-yl-3 H-[1,3,4]oxadiazol-2-one 5a and 5-piperidin-4-yl-3 H-[1,3,4]oxadiazol-2-thione 6a were weak agonists at alpha 2-, alpha 3-, and alpha 5-containing receptors. When coapplied with GABA, they were antagonistic in alpha 2-, alpha 4-, and alpha 6-containing receptors and potentiated alpha 3-containing receptors. 6a protected GABA binding site cysteine-substitution mutants alpha 1F64C and alpha 1S68C from reacting with methanethiosulfonate-ethylsulfonate. 6a specifically covalently modified the alpha 1R66C thiol, in the GABA binding site, through its oxadiazolethione sulfur. These results demonstrate the feasibility of synthesizing alpha subtype selective GABA mimetic drugs.


Asunto(s)
Agonistas de Receptores de GABA-A , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Sitios de Unión , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular , Electrofisiología , Femenino , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Isoxazoles/farmacología , Modelos Moleculares , Estructura Molecular , Muscimol/síntesis química , Muscimol/química , Muscimol/farmacología , Mutación/genética , Oocitos , Técnicas de Placa-Clamp , Piperidinas/síntesis química , Piperidinas/química , Piperidinas/farmacología , Subunidades de Proteína/agonistas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Ratas , Receptores de GABA-A/química , Receptores de GABA-A/genética , Relación Estructura-Actividad , Xenopus laevis
15.
J Neurosci ; 28(20): 5383-93, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18480294

RESUMEN

Phencyclidine (PCP) and ketamine are dissociative anesthetics capable of inducing analgesia, psychomimetic behavior, and a catatonic state of unconsciousness. Despite broad similarities, there are notable differences between the clinical actions of ketamine and PCP. Ketamine has a lower incidence of adverse effects and generally produces greater CNS depression than PCP. Both noncompetitively inhibit NMDA receptors, yet there is little evidence that these drugs affect GABA(A) receptors, the primary target of most anesthetics. alpha6beta2/3delta receptors are subtypes of the GABA(A) receptor family and are abundantly expressed in granular neurons within the adult cerebellum. Here, using an oocyte expression system, we show that at anesthetically relevant concentrations, ketamine, but not PCP, modulates alpha6beta2delta and alpha6beta3delta receptors. Additionally, at higher concentrations, ketamine directly activates these GABA(A) receptors. Comparatively, dizocilpine (MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate]), a potent noncompetitive antagonist of NMDA receptors that is structurally unrelated to PCP, did not produce any effect on alpha6beta2delta receptors. Of the recombinant GABA(A) receptor subtypes examined (alpha1beta2, alpha1beta2gamma2, alpha1beta2delta, alpha4beta2gamma2, alpha4beta2delta, alpha6beta2gamma2, alpha6beta2delta, and alpha6beta3delta), the actions of ketamine were unique to alpha6beta2delta and alpha6beta3delta receptors. In dissociated granule neurons and cerebellar slice recordings, ketamine potentiated the GABAergic conductance arising from alpha6-containing GABA(A) receptors, whereas PCP showed no effect. Furthermore, ketamine potentiation was absent in cerebellar granule neurons from transgenic functionally null alpha6(-/-) and delta(-/-)mice. These findings suggest that the higher CNS depressant level achieved by ketamine may be the result of its selective actions on alpha6beta2/3delta receptors.


Asunto(s)
Corteza Cerebelosa/efectos de los fármacos , Ketamina/farmacología , Neuronas/efectos de los fármacos , Fenciclidina/farmacología , Receptores de GABA-A/efectos de los fármacos , Anestésicos Disociativos/farmacología , Animales , Células Cultivadas , Corteza Cerebelosa/metabolismo , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/metabolismo , Oocitos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Xenopus laevis
16.
Bioorg Med Chem Lett ; 18(4): 1515-9, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18187324

RESUMEN

Radiochemical labeling of MDL 105725 using the secondary labeling precursor 2-[(18)F]fluoroethyltosylate ([(18)F]FETos) was carried out in yields of approximately 90% synthesizing [(18)F]MHMZ in a specific activity of approximately 50MBq/nmol with a starting activity of approximately 3GBq. Overall radiochemical yield including [(18)F]FETos synthon synthesis, [(18)F]fluoroalkylation and preparing the injectable [(18)F]MHMZ solution was 42% within a synthesis time of approximately 100 min. The novel compound showed excellent specific binding to the 5-HT(2A) receptor (K(i)=9.0 nM) in vitro and promising in vivo characteristics.


Asunto(s)
Radioisótopos de Flúor/química , Fluorobencenos/síntesis química , Piperidinas/síntesis química , Radiofármacos/síntesis química , Antagonistas del Receptor de Serotonina 5-HT2 , Antagonistas de la Serotonina/síntesis química , Animales , Unión Competitiva , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Fluorobencenos/química , Marcaje Isotópico , Ketanserina/análogos & derivados , Ketanserina/farmacocinética , Cinética , Piperidinas/química , Ensayo de Unión Radioligante , Cintigrafía , Radiofármacos/farmacocinética , Ratas , Receptor de Serotonina 5-HT2A/metabolismo , Antagonistas de la Serotonina/farmacocinética
17.
J Neurochem ; 105(2): 338-50, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18021290

RESUMEN

The behavioral and functional significance of the extrasynaptic inhibitory GABA(A) receptors in the brain is still poorly known. We used a transgenic mouse line expressing the GABA(A) receptor alpha6 subunit gene in the forebrain under the Thy-1.2 promoter (Thy1alpha6) mice ectopically expressing alpha6 subunits especially in the hippocampus to study how extrasynaptically enriched alphabeta(gamma2)-type receptors alter animal behavior and receptor responses. In these mice extrasynaptic alpha6beta receptors make up about 10% of the hippocampal GABA(A) receptors resulting in imbalance between synaptic and extrasynaptic inhibition. The synthetic GABA-site competitive agonist gaboxadol (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; 3 mg/kg) induced remarkable anxiolytic-like response in the light : dark exploration and elevated plus-maze tests in Thy1alpha6 mice, while being almost inactive in wild-type mice. The transgenic mice also lost quicker and for longer time their righting reflex after 25 mg/kg gaboxadol than wild-type mice. In hippocampal sections of Thy1alpha6 mice, the alpha6beta receptors could be visualized autoradiographically by interactions between gaboxadol and GABA via [(35)S]TBPS binding to the GABA(A) receptor ionophore. Gaboxadol inhibition of the binding could be partially prevented by GABA. Electrophysiology of recombinant GABA(A) receptors revealed that GABA was a partial agonist at alpha6beta3 and alpha6beta3delta receptors, but a full agonist at alpha6beta3gamma2 receptors when compared with gaboxadol. The results suggest strong behavioral effects via selective pharmacological activation of enriched extrasynaptic alphabeta GABA(A) receptors, and the mouse model represents an example of the functional consequences of altered balance between extrasynaptic and synaptic inhibition.


Asunto(s)
Conducta Animal/efectos de los fármacos , Agonistas del GABA/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Isoxazoles/farmacología , Receptores de GABA-A/metabolismo , Animales , Autorradiografía/métodos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Adaptación a la Oscuridad/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Unión Proteica/efectos de los fármacos , Subunidades de Proteína/metabolismo , Tiempo de Reacción/efectos de los fármacos , Receptores de GABA-A/genética , Reflejo/efectos de los fármacos , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Transfección/métodos , Ácido gamma-Aminobutírico/farmacología
19.
Alcohol ; 41(3): 163-76, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17591542

RESUMEN

In rodent models, gamma-aminobutyric acid A (GABAA) receptors with the alpha6 and delta subunits, expressed in the cerebellar and cochlear nucleus granule cells, have been linked to ethanol sensitivity and voluntary ethanol drinking. Here, we review the findings. When considering both in vivo contributions and data on cloned receptors, the evidence for direct participation of the alpha6-containing receptors to increased ethanol sensitivity is poor. The alpha6 subunit-knockout mouse lines do not have any changed sensitivity to ethanol, although these mice do display increased benzodiazepine sensitivity. However, in general the compensations occurring in knockout mice (regardless of which particular gene is knocked out) tend to fog interpretations of drug actions at the systems level. For example, the alpha6 knockout mice have increased TASK-1 channel expression in their cerebellar granule cells, which could influence sensitivity to ethanol in the opposite direction to that obtained with the alpha6 knockouts. Indeed, TASK-1 knockout mice are more impaired than wild types in motor skills when given ethanol; this might explain why GABAA receptor alpha6 knockout mice have unchanged ethanol sensitivities. As an alternative to studying knockout mice, we examined the claimed delta subunit-dependent/gamma2 subunit-independent ethanol/[3H]Ro 15-4513 binding sites on GABAA receptors. We looked at [3H]Ro 15-4513 binding in HEK 293 cell membrane homogenates containing rat recombinant alpha6/4beta3delta receptors and in mouse brain sections. Specific high-affinity [3H]Ro 15-4513 binding could not be detected under any conditions to the recombinant receptors or to the cerebellar sections of gamma2(F77I) knockin mice, nor was this binding to brain sections of wild-type C57BL/6 inhibited by 1-100 mM ethanol. Since ethanol may act on many receptor and channel protein targets in neuronal membranes, we consider the alpha6 (and alpha4) subunit-containing GABAA receptors unlikely to be directly responsible for any major part of ethanol's actions. Therefore, we finish the review by discussing more generally alcohol and GABAA receptors and by suggesting potential future directions for this research.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Receptores de GABA-A/efectos de los fármacos , Animales , Azidas/metabolismo , Azidas/farmacología , Benzodiazepinas/metabolismo , Benzodiazepinas/farmacología , Unión Competitiva/efectos de los fármacos , Depresores del Sistema Nervioso Central/antagonistas & inhibidores , Tolerancia a Medicamentos , Etanol/antagonistas & inhibidores , Humanos , Ratones , Ratas , Receptores de GABA-A/genética
20.
Neuropharmacology ; 52(3): 796-801, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17087982

RESUMEN

A chemically heterogeneous group of compounds acts at the benzodiazepine (BZ) recognition site of the diverse gamma-aminobutyric acid type A (GABA(A)) receptor complexes which can assemble from more than 16 known subunits. Most 1,4-BZs like diazepam recognize all GABA(A)/BZ receptors containing the alpha1-3 or alpha5 together with any beta and the gamma2 subunit. Other compounds differentiate less, e.g. Ro15-4513, that additionally recognizes alpha4- and a6-containing receptors, or differentiate more, e.g. zolpidem, that recognizes preferentially alpha1-containing receptors. Here we describe the functional properties of 1-(4-chloro-phenyl)-4-piperidin-1-yl-1,5-dihydro-imidazol-2-on (ELB139) in the presence and absence of the BZ receptor antagonist flumazenil (Ro15-1788) on recombinant alphaibeta2gamma2 (i=1-5) receptor subtypes expressed in HEK 293 cells. The properties were measured with the whole-cell variation of the patch-clamp technique and compared to those of diazepam. Like the latter, ELB139 did not potentiate GABA-induced currents in alpha4-containing receptors, but it displays functional subtype specificity between alpha1, alpha2, alpha3, and alpha5beta2gamma2 receptors with highest potency in alpha3-containing receptors but highest efficacy in alpha1- or alpha2-containing receptors, respectively. ELB139 acted as a partial agonist on these receptor subtypes reaching 40-50% of the efficacy of diazepam.


Asunto(s)
Ansiolíticos/farmacología , Diazepam/farmacología , Imidazoles/farmacología , Potenciales de la Membrana/efectos de los fármacos , Piperidinas/farmacología , Receptores de GABA-A/fisiología , Animales , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Agonistas de Receptores de GABA-A , Humanos , Técnicas de Placa-Clamp/métodos , Ratas , Receptores de GABA-A/química , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...