Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Nat Commun ; 15(1): 3138, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605034

RESUMEN

The carboxy-terminus of the spliceosomal protein PRPF8, which regulates the RNA helicase Brr2, is a hotspot for mutations causing retinitis pigmentosa-type 13, with unclear role in human splicing and tissue-specificity mechanism. We used patient induced pluripotent stem cells-derived cells, carrying the heterozygous PRPF8 c.6926 A > C (p.H2309P) mutation to demonstrate retinal-specific endophenotypes comprising photoreceptor loss, apical-basal polarity and ciliary defects. Comprehensive molecular, transcriptomic, and proteomic analyses revealed a role of the PRPF8/Brr2 regulation in 5'-splice site (5'SS) selection by spliceosomes, for which disruption impaired alternative splicing and weak/suboptimal 5'SS selection, and enhanced cryptic splicing, predominantly in ciliary and retinal-specific transcripts. Altered splicing efficiency, nuclear speckles organisation, and PRPF8 interaction with U6 snRNA, caused accumulation of active spliceosomes and poly(A)+ mRNAs in unique splicing clusters located at the nuclear periphery of photoreceptors. Collectively these elucidate the role of PRPF8/Brr2 regulatory mechanisms in splicing and the molecular basis of retinal disease, informing therapeutic approaches.


Asunto(s)
Sitios de Empalme de ARN , Retinitis Pigmentosa , Empalmosomas , Humanos , Empalmosomas/genética , Empalmosomas/metabolismo , Proteómica , Empalme del ARN/genética , Empalme Alternativo/genética , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , ARN Mensajero/metabolismo , Mutación , ADN Helicasas/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
EMBO J ; 43(6): 1065-1088, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383864

RESUMEN

The B complex is a key intermediate stage of spliceosome assembly. To improve the structural resolution of monomeric, human spliceosomal B (hB) complexes and thereby generate a more comprehensive hB molecular model, we determined the cryo-EM structure of B complex dimers formed in the presence of ATP γ S. The enhanced resolution of these complexes allows a finer molecular dissection of how the 5' splice site (5'ss) is recognized in hB, and new insights into molecular interactions of FBP21, SNU23 and PRP38 with the U6/5'ss helix and with each other. It also reveals that SMU1 and RED are present as a heterotetrameric complex and are located at the interface of the B dimer protomers. We further show that MFAP1 and UBL5 form a 5' exon binding channel in hB, and elucidate the molecular contacts stabilizing the 5' exon at this stage. Our studies thus yield more accurate models of protein and RNA components of hB complexes. They further allow the localization of additional proteins and protein domains (such as SF3B6, BUD31 and TCERG1) whose position was not previously known, thereby uncovering new functions for B-specific and other hB proteins during pre-mRNA splicing.


Asunto(s)
Empalme del ARN , Empalmosomas , Humanos , Empalmosomas/genética , Microscopía por Crioelectrón , Sitios de Empalme de ARN , Exones , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Elongación Transcripcional/genética , Proteínas Nucleares/metabolismo
3.
Sci Adv ; 9(9): eadf1785, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867703

RESUMEN

Alternative precursor messenger RNA splicing is instrumental in expanding the proteome of higher eukaryotes, and changes in 3' splice site (3'ss) usage contribute to human disease. We demonstrate by small interfering RNA-mediated knockdowns, followed by RNA sequencing, that many proteins first recruited to human C* spliceosomes, which catalyze step 2 of splicing, regulate alternative splicing, including the selection of alternatively spliced NAGNAG 3'ss. Cryo-electron microscopy and protein cross-linking reveal the molecular architecture of these proteins in C* spliceosomes, providing mechanistic and structural insights into how they influence 3'ss usage. They further elucidate the path of the 3' region of the intron, allowing a structure-based model for how the C* spliceosome potentially scans for the proximal 3'ss. By combining biochemical and structural approaches with genome-wide functional analyses, our studies reveal widespread regulation of alternative 3'ss usage after step 1 of splicing and the likely mechanisms whereby C* proteins influence NAGNAG 3'ss choices.


Asunto(s)
Sitios de Empalme de ARN , Empalmosomas , Humanos , Microscopía por Crioelectrón , Empalme Alternativo , Intrones
4.
Clin Transl Med ; 12(3): e759, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35297555

RESUMEN

INTRODUCTION: Mutations in pre-mRNA processing factor 31 (PRPF31), a core protein of the spliceosomal tri-snRNP complex, cause autosomal-dominant retinitis pigmentosa (adRP). It has remained an enigma why mutations in ubiquitously expressed tri-snRNP proteins result in retina-specific disorders, and so far, the underlying mechanism of splicing factors-related RP is poorly understood. METHODS: We used the induced pluripotent stem cell (iPSC) technology to generate retinal organoids and RPE models from four patients with severe and very severe PRPF31-adRP, unaffected individuals and a CRISPR/Cas9 isogenic control. RESULTS: To fully assess the impacts of PRPF31 mutations, quantitative proteomics analyses of retinal organoids and RPE cells were carried out showing RNA splicing, autophagy and lysosome, unfolded protein response (UPR) and visual cycle-related pathways to be significantly affected. Strikingly, the patient-derived RPE and retinal cells were characterised by the presence of large amounts of cytoplasmic aggregates containing the mutant PRPF31 and misfolded, ubiquitin-conjugated proteins including key visual cycle and other RP-linked tri-snRNP proteins, which accumulated progressively with time. The mutant PRPF31 variant was not incorporated into splicing complexes, but reduction of PRPF31 wild-type levels led to tri-snRNP assembly defects in Cajal bodies of PRPF31 patient retinal cells, altered morphology of nuclear speckles and reduced formation of active spliceosomes giving rise to global splicing dysregulation. Moreover, the impaired waste disposal mechanisms further exacerbated aggregate formation, and targeting these by activating the autophagy pathway using Rapamycin reduced cytoplasmic aggregates, leading to improved cell survival. CONCLUSIONS: Our data demonstrate that it is the progressive aggregate accumulation that overburdens the waste disposal machinery rather than direct PRPF31-initiated mis-splicing, and thus relieving the RPE cells from insoluble cytoplasmic aggregates presents a novel therapeutic strategy that can be combined with gene therapy studies to fully restore RPE and retinal cell function in PRPF31-adRP patients.


Asunto(s)
Autofagia , Proteínas del Ojo , Células Madre Pluripotentes Inducidas , Agregado de Proteínas , Retinitis Pigmentosa , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Ribonucleoproteínas Nucleares Pequeñas
5.
Nature ; 596(7871): 296-300, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34349264

RESUMEN

During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Precursores del ARN/química , Precursores del ARN/genética , Empalme del ARN , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Empalmosomas/enzimología , Actinas/genética , Adenosina/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/ultraestructura , Modelos Moleculares , Mutación , Dominios Proteicos , Precursores del ARN/metabolismo , Precursores del ARN/ultraestructura , Empalme del ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/química , Empalmosomas/metabolismo
7.
Nucleic Acids Res ; 49(10): 5845-5866, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34023904

RESUMEN

Splicing is catalyzed by the spliceosome, a compositionally dynamic complex assembled stepwise on pre-mRNA. We reveal links between splicing machinery components and the intrinsically disordered ciliopathy protein SANS. Pathogenic mutations in SANS/USH1G lead to Usher syndrome-the most common cause of deaf-blindness. Previously, SANS was shown to function only in the cytosol and primary cilia. Here, we have uncovered molecular links between SANS and pre-mRNA splicing catalyzed by the spliceosome in the nucleus. We show that SANS is found in Cajal bodies and nuclear speckles, where it interacts with components of spliceosomal sub-complexes such as SF3B1 and the large splicing cofactor SON but also with PRPFs and snRNAs related to the tri-snRNP complex. SANS is required for the transfer of tri-snRNPs between Cajal bodies and nuclear speckles for spliceosome assembly and may also participate in snRNP recycling back to Cajal bodies. SANS depletion alters the kinetics of spliceosome assembly, leading to accumulation of complex A. SANS deficiency and USH1G pathogenic mutations affects splicing of genes related to cell proliferation and human Usher syndrome. Thus, we provide the first evidence that splicing dysregulation may participate in the pathophysiology of Usher syndrome.


Asunto(s)
Empalme Alternativo/genética , Proteínas del Tejido Nervioso/metabolismo , Precursores del ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Empalmosomas/metabolismo , Síndromes de Usher/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular/genética , Cuerpos Enrollados/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Ojo/metabolismo , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Espectrometría de Masas , Microscopía Electrónica de Transmisión , Antígenos de Histocompatibilidad Menor/metabolismo , Proteínas del Tejido Nervioso/genética , Fosfoproteínas/metabolismo , Proteómica , Precursores del ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Empalmosomas/genética , Factores de Transcripción/metabolismo , Síndromes de Usher/genética
8.
Science ; 371(6526): 305-309, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33446560

RESUMEN

To initiate cotranscriptional splicing, RNA polymerase II (Pol II) recruits the U1 small nuclear ribonucleoprotein particle (U1 snRNP) to nascent precursor messenger RNA (pre-mRNA). Here, we report the cryo-electron microscopy structure of a mammalian transcribing Pol II-U1 snRNP complex. The structure reveals that Pol II and U1 snRNP interact directly. This interaction positions the pre-mRNA 5' splice site near the RNA exit site of Pol II. Extension of pre-mRNA retains the 5' splice site, leading to the formation of a "growing intron loop." Loop formation may facilitate scanning of nascent pre-mRNA for the 3' splice site, functional pairing of distant intron ends, and prespliceosome assembly. Our results provide a starting point for a mechanistic analysis of cotranscriptional spliceosome assembly and the biogenesis of mRNA isoforms by alternative splicing.


Asunto(s)
Empalme Alternativo , ARN Polimerasa II/química , ARN Mensajero/biosíntesis , Ribonucleoproteína Nuclear Pequeña U1/química , Empalmosomas/química , Animales , Microscopía por Crioelectrón , Humanos , Intrones , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Precursores del ARN/química , ARN Mensajero/química , Empalmosomas/metabolismo , Sus scrofa , Transcripción Genética
9.
Science ; 370(6523)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33243851

RESUMEN

Spliceosome activation involves extensive protein and RNA rearrangements that lead to formation of a catalytically active U2/U6 RNA structure. At present, little is known about the assembly pathway of the latter and the mechanism whereby proteins aid its proper folding. Here, we report the cryo-electron microscopy structures of two human, activated spliceosome precursors (that is, pre-Bact complexes) at core resolutions of 3.9 and 4.2 angstroms. These structures elucidate the order of the numerous protein exchanges that occur during activation, the mutually exclusive interactions that ensure the correct order of ribonucleoprotein rearrangements needed to form the U2/U6 catalytic RNA, and the stepwise folding pathway of the latter. Structural comparisons with mature Bact complexes reveal the molecular mechanism whereby a conformational change in the scaffold protein PRP8 facilitates final three-dimensional folding of the U2/U6 catalytic RNA.


Asunto(s)
Pliegue del ARN , Empalme del ARN , ARN Nuclear Pequeño/química , Proteínas de Unión al ARN/química , Empalmosomas/química , Dominio Catalítico , Microscopía por Crioelectrón , Humanos , Conformación Proteica , ARN Catalítico/química , ARN Nuclear Pequeño/genética , Empalmosomas/genética
10.
Nat Commun ; 11(1): 5621, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159082

RESUMEN

Interactions between U2AF homology motifs (UHMs) and U2AF ligand motifs (ULMs) play a crucial role in early spliceosome assembly in eukaryotic gene regulation. UHM-ULM interactions mediate heterodimerization of the constitutive splicing factors U2AF65 and U2AF35 and between other splicing factors that regulate spliceosome assembly at the 3' splice site, where UHM domains of alternative splicing factors, such as SPF45 and PUF60, contribute to alternative splicing regulation. Here, we performed high-throughput screening using fluorescence polarization assays with hit validation by NMR and identified phenothiazines as general inhibitors of UHM-ULM interactions. NMR studies show that these compounds occupy the tryptophan binding pocket of UHM domains. Co-crystal structures of the inhibitors with the PUF60 UHM domain and medicinal chemistry provide structure-activity-relationships and reveal functional groups important for binding. These inhibitors inhibit early spliceosome assembly on pre-mRNA substrates in vitro. Our data show that spliceosome assembly can be inhibited by targeting UHM-ULM interactions by small molecules, thus extending the toolkit of splicing modulators for structural and biochemical studies of the spliceosome and splicing regulation.


Asunto(s)
Fenotiazinas/química , Fenotiazinas/farmacología , Empalmosomas/efectos de los fármacos , Empalmosomas/metabolismo , Empalme Alternativo , Humanos , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Empalmosomas/genética , Factor de Empalme U2AF/química , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo
11.
Mol Cell ; 80(1): 127-139.e6, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33007253

RESUMEN

Human spliceosomes contain numerous proteins absent in yeast, whose functions remain largely unknown. Here we report a 3D cryo-EM structure of the human spliceosomal C complex at 3.4 Å core resolution and 4.5-5.7 Å at its periphery, and aided by protein crosslinking we determine its molecular architecture. Our structure provides additional insights into the spliceosome's architecture between the catalytic steps of splicing, and how proteins aid formation of the spliceosome's catalytically active RNP (ribonucleoprotein) conformation. It reveals the spatial organization of the metazoan-specific proteins PPWD1, WDR70, FRG1, and CIR1 in human C complexes, indicating they stabilize functionally important protein domains and RNA structures rearranged/repositioned during the Bact to C transition. Structural comparisons with human Bact, C∗, and P complexes reveal an intricate cascade of RNP rearrangements during splicing catalysis, with intermediate RNP conformations not found in yeast, and additionally elucidate the structural basis for the sequential recruitment of metazoan-specific spliceosomal proteins.


Asunto(s)
Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Empalmosomas/metabolismo , Animales , Catálisis , Células HeLa , Humanos , Intrones/genética , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Unión Proteica , Estabilidad Proteica , ARN/química , ARN/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Factores de Tiempo
12.
Nature ; 583(7815): 310-313, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32494006

RESUMEN

The U2 small nuclear ribonucleoprotein (snRNP) has an essential role in the selection of the precursor mRNA branch-site adenosine, the nucleophile for the first step of splicing1. Stable addition of U2 during early spliceosome formation requires the DEAD-box ATPase PRP52-7. Yeast U2 small nuclear RNA (snRNA) nucleotides that form base pairs with the branch site are initially sequestered in a branchpoint-interacting stem-loop (BSL)8, but whether the human U2 snRNA folds in a similar manner is unknown. The U2 SF3B1 protein, a common mutational target in haematopoietic cancers9, contains a HEAT domain (SF3B1HEAT) with an open conformation in isolated SF3b10, but a closed conformation in spliceosomes11, which is required for stable interaction between U2 and the branch site. Here we report a 3D cryo-electron microscopy structure of the human 17S U2 snRNP at a core resolution of 4.1 Å and combine it with protein crosslinking data to determine the molecular architecture of this snRNP. Our structure reveals that SF3B1HEAT interacts with PRP5 and TAT-SF1, and maintains its open conformation in U2 snRNP, and that U2 snRNA forms a BSL that is sandwiched between PRP5, TAT-SF1 and SF3B1HEAT. Thus, substantial remodelling of the BSL and displacement of BSL-interacting proteins must occur to allow formation of the U2-branch-site helix. Our studies provide a structural explanation of why TAT-SF1 must be displaced before the stable addition of U2 to the spliceosome, and identify RNP rearrangements facilitated by PRP5 that are required for stable interaction between U2 and the branch site.


Asunto(s)
Microscopía por Crioelectrón , Ribonucleoproteína Nuclear Pequeña U2/química , Ribonucleoproteína Nuclear Pequeña U2/ultraestructura , Secuencia de Bases , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/genética , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Transactivadores/química , Transactivadores/metabolismo
13.
Mol Cell ; 77(6): 1322-1339.e11, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32006464

RESUMEN

Deregulated expression of MYC induces a dependence on the NUAK1 kinase, but the molecular mechanisms underlying this dependence have not been fully clarified. Here, we show that NUAK1 is a predominantly nuclear protein that associates with a network of nuclear protein phosphatase 1 (PP1) interactors and that PNUTS, a nuclear regulatory subunit of PP1, is phosphorylated by NUAK1. Both NUAK1 and PNUTS associate with the splicing machinery. Inhibition of NUAK1 abolishes chromatin association of PNUTS, reduces spliceosome activity, and suppresses nascent RNA synthesis. Activation of MYC does not bypass the requirement for NUAK1 for spliceosome activity but significantly attenuates transcription inhibition. Consequently, NUAK1 inhibition in MYC-transformed cells induces global accumulation of RNAPII both at the pause site and at the first exon-intron boundary but does not increase mRNA synthesis. We suggest that NUAK1 inhibition in the presence of deregulated MYC traps non-productive RNAPII because of the absence of correctly assembled spliceosomes.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina/metabolismo , Proteínas Quinasas/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Represoras/metabolismo , Empalmosomas/metabolismo , Transcripción Genética , Animales , Núcleo Celular/genética , Cromatina/genética , Regulación de la Expresión Génica , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Proteínas Quinasas/genética , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Empalme del ARN , Proteínas Represoras/genética , Empalmosomas/genética
14.
Nat Commun ; 10(1): 3639, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409787

RESUMEN

Human pre-catalytic spliceosomes contain several proteins that associate transiently just prior to spliceosome activation and are absent in yeast, suggesting that this critical step is more complex in higher eukaryotes. We demonstrate via RNAi coupled with RNA-Seq that two of these human-specific proteins, Smu1 and RED, function both as alternative splicing regulators and as general splicing factors and are required predominantly for efficient splicing of short introns. In vitro splicing assays reveal that Smu1 and RED promote spliceosome activation, and are essential for this step when the distance between the pre-mRNA's 5' splice site (SS) and branch site (BS) is sufficiently short. This Smu1-RED requirement can be bypassed when the 5' and 3' regions of short introns are physically separated. Our observations suggest that Smu1 and RED relieve physical constraints arising from a short 5'SS-BS distance, thereby enabling spliceosomes to overcome structural challenges associated with the splicing of short introns.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Citocinas/metabolismo , Intrones , Empalme del ARN , Empalmosomas/metabolismo , Proteínas Cromosómicas no Histona/genética , Citocinas/genética , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Sitios de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Empalmosomas/genética
15.
Am J Hum Genet ; 105(3): 573-587, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31447096

RESUMEN

A precise genetic diagnosis is the single most important step for families with genetic disorders to enable personalized and preventative medicine. In addition to genetic variants in coding regions (exons) that can change a protein sequence, abnormal pre-mRNA splicing can be devastating for the encoded protein, inducing a frameshift or in-frame deletion/insertion of multiple residues. Non-coding variants that disrupt splicing are extremely challenging to identify. Stemming from an initial clinical discovery in two index Australian families, we define 25 families with genetic disorders caused by a class of pathogenic non-coding splice variant due to intronic deletions. These pathogenic intronic deletions spare all consensus splice motifs, though they critically shorten the minimal distance between the 5' splice-site (5'SS) and branchpoint. The mechanistic basis for abnormal splicing is due to biophysical constraint precluding U1/U2 spliceosome assembly, which stalls in A-complexes (that bridge the 5'SS and branchpoint). Substitution of deleted nucleotides with non-specific sequences restores spliceosome assembly and normal splicing, arguing against loss of an intronic element as the primary causal basis. Incremental lengthening of 5'SS-branchpoint length in our index EMD case subject defines 45-47 nt as the critical elongation enabling (inefficient) spliceosome assembly for EMD intron 5. The 5'SS-branchpoint space constraint mechanism, not currently factored by genomic informatics pipelines, is relevant to diagnosis and precision medicine across the breadth of Mendelian disorders and cancer genomics.


Asunto(s)
Intrones , Empalme del ARN , Empalmosomas , Adolescente , Adulto , Fenómenos Biofísicos , Niño , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje
16.
Artículo en Inglés | MEDLINE | ID: mdl-30765414

RESUMEN

The spliceosome is a highly complex, dynamic ribonucleoprotein molecular machine that undergoes numerous structural and compositional rearrangements that lead to the formation of its active site. Recent advances in cyroelectron microscopy (cryo-EM) have provided a plethora of near-atomic structural information about the inner workings of the spliceosome. Aided by previous biochemical, structural, and functional studies, cryo-EM has confirmed or provided a structural basis for most of the prevailing models of spliceosome function, but at the same time allowed novel insights into splicing catalysis and the intriguing dynamics of the spliceosome. The mechanism of pre-mRNA splicing is highly conserved between humans and yeast, but the compositional dynamics and ribonucleoprotein (RNP) remodeling of the human spliceosome are more complex. Here, we summarize recent advances in our understanding of the molecular architecture of the human spliceosome, highlighting differences between the human and yeast splicing machineries.


Asunto(s)
Conformación de Ácido Nucleico , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Catálisis , Microscopía por Crioelectrón , Células Eucariotas , Mutación , Neoplasias/metabolismo , Conformación Proteica , Precursores del ARN/química , ARN Mensajero/química , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo
17.
Nat Commun ; 9(1): 4234, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30315276

RESUMEN

Mutations in pre-mRNA processing factors (PRPFs) cause autosomal-dominant retinitis pigmentosa (RP), but it is unclear why mutations in ubiquitously expressed genes cause non-syndromic retinal disease. Here, we generate transcriptome profiles from RP11 (PRPF31-mutated) patient-derived retinal organoids and retinal pigment epithelium (RPE), as well as Prpf31+/- mouse tissues, which revealed that disrupted alternative splicing occurred for specific splicing programmes. Mis-splicing of genes encoding pre-mRNA splicing proteins was limited to patient-specific retinal cells and Prpf31+/- mouse retinae and RPE. Mis-splicing of genes implicated in ciliogenesis and cellular adhesion was associated with severe RPE defects that include disrupted apical - basal polarity, reduced trans-epithelial resistance and phagocytic capacity, and decreased cilia length and incidence. Disrupted cilia morphology also occurred in patient-derived photoreceptors, associated with progressive degeneration and cellular stress. In situ gene editing of a pathogenic mutation rescued protein expression and key cellular phenotypes in RPE and photoreceptors, providing proof of concept for future therapeutic strategies.


Asunto(s)
Proteínas del Ojo/metabolismo , Retinitis Pigmentosa/etiología , Retinitis Pigmentosa/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/fisiología , Animales , Adhesión Celular/genética , Adhesión Celular/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Cilios/genética , Cilios/metabolismo , Cilios/fisiología , Proteínas del Ojo/genética , Citometría de Flujo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Mutación/genética , Organoides/citología , Organoides/metabolismo , Empalme del ARN/genética , Empalme del ARN/fisiología , Retina/citología , Retina/metabolismo , Retinitis Pigmentosa/genética
18.
Nucleic Acids Res ; 46(22): 12126-12138, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30335160

RESUMEN

The active 3D conformation of the spliceosome's catalytic U2/U6 RNA core is stabilised by a network of secondary and tertiary RNA interactions, but also depends on spliceosomal proteins for its formation. To determine the contribution towards splicing of specific RNA secondary and tertiary interactions in the U2/U6 RNA core, we introduced mutations in critical U6 nucleotides and tested their effect on splicing using a yeast in vitro U6 depletion/complementation system. Elimination of selected RNA tertiary interactions involving the U6 catalytic triad, or deletions of the bases of U6-U80 or U6-A59, had moderate to no effect on splicing, showing that the affected secondary and tertiary interactions are not required for splicing catalysis. However, removal of the base of U6-G60 of the catalytic triad completely blocked splicing, without affecting assembly of the activated spliceosome or its subsequent conversion into a B*-like complex. Our data suggest that the catalytic configuration of the RNA core that allows catalytic metal M1 binding can be maintained by Protein-RNA contacts. However, RNA stacking interactions in the U2/U6 RNA core are required for productive coordination of metal M2. The functional conformation of the U2/U6 RNA core is thus highly buffered, with overlapping contributions from RNA-RNA and Protein-RNA interactions.


Asunto(s)
Conformación de Ácido Nucleico , Empalme del ARN , ARN de Hongos/química , ARN Nuclear Pequeño/química , Empalmosomas/genética , Sitios de Unión , Catálisis , Dominio Catalítico , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Metales/química , Mutación , Precursores del ARN/química , ARN Mensajero/metabolismo , Saccharomyces cerevisiae
19.
Mol Cell ; 70(2): 265-273.e8, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29656923

RESUMEN

SF3B is a multi-protein complex essential for branch site (BS) recognition and selection during pre-mRNA splicing. Several splicing modulators with antitumor activity bind SF3B and thereby modulate splicing. Here we report the crystal structure of a human SF3B core in complex with pladienolide B (PB), a macrocyclic splicing modulator and potent inhibitor of tumor cell proliferation. PB stalls SF3B in an open conformation by acting like a wedge within a hinge, modulating SF3B's transition to the closed conformation needed to form the BS adenosine-binding pocket and stably accommodate the BS/U2 duplex. This work explains the structural basis for the splicing modulation activity of PB and related compounds, and reveals key interactions between SF3B and a common pharmacophore, providing a framework for future structure-based drug design.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Epoxi/farmacología , Macrólidos/farmacología , Fosfoproteínas/metabolismo , Factores de Empalme de ARN/metabolismo , Empalme del ARN/efectos de los fármacos , Adenosina/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Compuestos Epoxi/química , Compuestos Epoxi/metabolismo , Células HCT116 , Células HeLa , Humanos , Macrólidos/química , Macrólidos/metabolismo , Modelos Moleculares , Complejos Multiproteicos , Fosfoproteínas/química , Fosfoproteínas/genética , Unión Proteica , Conformación Proteica , Precursores del ARN/genética , Precursores del ARN/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Células Sf9 , Relación Estructura-Actividad , Transactivadores
20.
Mol Cell ; 69(6): 979-992.e6, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547724

RESUMEN

Human nineteen complex (NTC) acts as a multimeric E3 ubiquitin ligase in DNA repair and splicing. The transfer of ubiquitin is mediated by Prp19-a homotetrameric component of NTC whose elongated coiled coils serve as an assembly axis for two other proteins called SPF27 and CDC5L. We find that Prp19 is inactive on its own and have elucidated the structural basis of its autoinhibition by crystallography and mutational analysis. Formation of the NTC core by stepwise assembly of SPF27, CDC5L, and PLRG1 onto the Prp19 tetramer enables ubiquitin ligation. Protein-protein crosslinking of NTC, functional assays in vitro, and assessment of its role in DNA damage response provide mechanistic insight into the organization of the NTC core and the communication between PLRG1 and Prp19 that enables E3 activity. This reveals a unique mode of regulation for a complex E3 ligase and advances understanding of its dynamics in various cellular pathways.


Asunto(s)
Enzimas Reparadoras del ADN/metabolismo , Proteínas Nucleares/metabolismo , Factores de Empalme de ARN/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Cristalización , Daño del ADN , Enzimas Reparadoras del ADN/química , Enzimas Reparadoras del ADN/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Modelos Moleculares , Mutación , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformación Proteica , Factores de Empalme de ARN/química , Factores de Empalme de ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína de Replicación A/metabolismo , Células Sf9 , Spodoptera , Relación Estructura-Actividad , Ubiquitinación , Repeticiones WD40
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...