Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.672
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411889, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086010

RESUMEN

The stereochemistry of shape-persistent molecular cages, particularly those resembling prisms, exerts significant influence on their application-specific functionalities. Although methods exist for fabricating inherently chiral prism-like cages, strategies for catalytic asymmetric synthesis of these structures in a diversity-oriented fashion remain unexplored. Herein, we introduce an unprecedented organocatalytic desymmetrization approach for the generation of inherently chiral prism-like cages via phosphonium-containing foldamer-catalyzed SNAr reactions. This methodology establishes a topological connection, enabling the facile assembly of a wide range of versatile stereogenic-at-cage building blocks possessing two highly modifiable groups. Furthermore, subsequent stereospecific transformations of the remaining chlorides and/or ethers afford convenient access to numerous functionally relevant chiral-at-cage molecules.

2.
Technol Cancer Res Treat ; 23: 15330338241273160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099463

RESUMEN

Introduction: The independent diagnostic value of inflammatory markers neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) and the diagnostic efficacy of NLR, derived neutrophil to lymphocyte ratio (dNLR), PLR, and lymphocyte-to-monocyte ratio (LMR) in glioma cases remain unclear. We investigated the correlation of preoperative peripheral blood inflammatory markers with pathological grade, Ki-67 Proliferation Index, and IDH-1 gene phenotype in patients with glioma, focusing on tumor grade and prognosis. Methods: We retrospectively analyzed the clinical, pathological, and laboratory data of 334 patients with glioma with varying grades and 345 with World Health Organization (WHO I) meningioma who underwent initial surgery at the Affiliated Hospital of Jining Medical University from December 2019 to December 2021. The diagnostic value of peripheral blood inflammatory markers for glioma was investigated. Results: The proportion of men smoking and drinking was significantly higher in the glioma group than in the meningioma group (P < .05); in contrast, the age and body mass index (Kg/m2) were significantly lower in the glioma group (P = .01). Significant differences were noted in the pathological grade (WHO II, III, and IV), Ki-67 Proliferation Index, and peripheral blood inflammatory markers such as lymphocyte median, NLR, dNLR, and PLR between the groups (P < .05). No significant correlation existed between peripheral blood inflammatory factors and IDH-1 gene mutation status or tumor location in patients with glioma (P > .05). LMR, NLR, dNLR, and PLR, varied significantly among different glioma types (P < .05). White blood cell (WBC) count, neutrophil, NLR, and dNLR correlated positively with glioma risk. Further, WBC, neutrophil, NLR, dNLR, and LMR had a high diagnostic efficiency. Conclusion: Peripheral blood inflammatory markers, serving as noninvasive biomarkers, offer high sensitivity and specificity for diagnosing glioma, differentiating it from meningioma, diagnosing GBM, and distinguishing GBM from low-grade glioma. These markers may be implemented as routine screening tools.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Encefálicas , Glioma , Clasificación del Tumor , Neutrófilos , Humanos , Glioma/patología , Glioma/sangre , Glioma/cirugía , Glioma/diagnóstico , Masculino , Femenino , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/sangre , Neutrófilos/patología , Adulto , Estudios Retrospectivos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/sangre , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/diagnóstico , Anciano , Linfocitos/patología , Periodo Preoperatorio , Inflamación/patología , Inflamación/sangre , Plaquetas/patología , Curva ROC
3.
BMC Public Health ; 24(1): 2109, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103831

RESUMEN

BACKGROUND: Loneliness and social isolation have been found to be associated with various health-related outcomes. Our study aimed to evaluate the association of loneliness and social isolation with the risk of glaucoma. METHODS: A total of 373,330 participants from the UK Biobank without glaucoma at recruitment were included in this study. Self-reported questionnaires were used to define loneliness and social isolation. Incident glaucoma events were identified by hospital inpatient admissions and self-reported data. COX proportional hazards models adjusted for sociodemographic, lifestyle, and health-related factors were used to estimate hazard ratios (HRs) and 95% CIs. RESULTS: During a median follow-up of 13.1 (interquartile range: 12.3-13.9) years, 6,489 participants developed glaucoma. After adjusting for confounding factors, loneliness (yes vs. no: adjusted HR: 1.16; 95% CI: 1.04-1.30; P = 0.009) and social isolation (yes vs. no: adjusted HR: 1.08; 95% CI: 1.01-1.16; P = 0.033) were associated with an increased risk of glaucoma. CONCLUSIONS: In this population-based prospective cohort study, loneliness and social isolation were associated with a higher risk of glaucoma.


Asunto(s)
Glaucoma , Soledad , Aislamiento Social , Humanos , Soledad/psicología , Reino Unido/epidemiología , Aislamiento Social/psicología , Masculino , Femenino , Persona de Mediana Edad , Glaucoma/psicología , Glaucoma/epidemiología , Estudios Prospectivos , Factores de Riesgo , Anciano , Adulto , Bancos de Muestras Biológicas , Modelos de Riesgos Proporcionales , Encuestas y Cuestionarios , Autoinforme , Biobanco del Reino Unido
4.
Drug Dev Res ; 85(5): e22241, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104176

RESUMEN

The role of KRAS mutation in non-small cell lung cancer (NSCLC) initiation and progression is well-established. However, "undruggable" KRAS protein poses the research of small molecule inhibitors a significant challenge. Addressing this, proteolysis-targeting chimeras (PROTACs) have become a cutting-edge treatment method, emphasizing protein degradation. A modified ethanol injection method was employed in this study to formulate liposomes encapsulating PROTAC drug LC-2 (LC-2 LPs). Precise surface modifications using cell-penetrating peptide R8 yielded R8-LC-2 liposomes (R8-LC-2 LPs). Comprehensive cellular uptake and cytotoxicity studies unveiled that R8-LC-2 LPs depended on concentration and time, showcasing the superior performance of R8-LC-2 LPs compared to normal liposomes. In vivo pharmacokinetic profiles demonstrated the capacity of DSPE-PEG2000 to prolong the circulation time of LC-2, leading to higher plasma concentrations compared to free LC-2. In vivo antitumor efficacy research underscored the remarkable ability of R8-LC-2 LPs to effectively suppress tumor growth. This study contributed to the exploration of enhanced therapeutic strategies for NSCLC, specifically focusing on the development of liposomal PROTACs targeting the "undruggable" KRAS protein. The findings provide valuable insights into the potential of this innovative approach, offering prospects for improved drug delivery and heightened antitumor efficacy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Liposomas , Neoplasias Pulmonares , Proteolisis , Proteínas Proto-Oncogénicas p21(ras) , Animales , Humanos , Ratones , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Línea Celular Tumoral , Péptidos de Penetración Celular , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Proteolisis/efectos de los fármacos , Quimera Dirigida a la Proteólisis/administración & dosificación , Quimera Dirigida a la Proteólisis/farmacocinética , Quimera Dirigida a la Proteólisis/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Ratas
5.
Crit Care Res Pract ; 2024: 9562200, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104663

RESUMEN

Background: Elevated red blood cell distribution width (RDW) levels are strongly associated with an increased risk of mortality in patients with congestive heart failure (CHF). Additionally, heart failure has been closely linked to diabetes. Nevertheless, the relationship between RDW and in-hospital mortality in the intensive care unit (ICU) among patients with both congestive heart failure (CHF) and diabetes mellitus (DM) remains uncertain. Methods: This retrospective study utilized data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, a comprehensive critical care repository. RDW was assessed as both continuous and categorical variables. The primary outcome of the study was in-hospital mortality at the time of hospital discharge. We examined the association between RDW on ICU admission and in-hospital mortality using multivariable logistic regression models, restricted cubic spline analysis, and subgroup analysis. Results: The cohort consisted of 7,063 patients with both DM and CHF (3,135 females and 3,928 males). After adjusting for potential confounders, we found an association between a 9% increase in mortality rate and a 1 g/L increase in RDW level (OR = 1.09; 95% CI, 1.05∼1.13), which was associated with 11 and 58% increases in mortality rates in Q2 (OR = 1.11, 95% CI: 0.87∼1.43) and Q3 (OR = 1.58, 95% CI: 1.22∼2.04), respectively, compared with that in Q1. Moreover, we observed a significant linear association between RDW and in-hospital mortality, along with strong stratified analyses to support the findings. Conclusions: Our findings establish a positive association between RDW and in-hospital mortality in patients with DM and CHF.

6.
Acta Diabetol ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102050

RESUMEN

AIMS: Controlled metabolic factors and socioeconomic status (SES) was crucial for prevention of diabetic retinopathy (DR). The study aims to assess the metabolic factors control and SES among working-age adults (18-64 years) with diabetes compared to older adults (65 years and older). METHODS: Totals of 6738 participants with self-reported diagnosed diabetes from National Health and Nutrition Examination Survey were included, of whom 3482 were working-age and 3256 were elderly. The prevalence of DR, metabolic factors control, and the impact of SES and diabetic duration on DR was estimated. Subgroup analysis among working-age adults was employed across different diabetic duration and SES level. RESULTS: The prevalence of DR was 20.8% among working-age adults and 20.6% in elderly adults. Further, working-age adults possessed suboptimal control on glycemia (median HbA1c: 7.0% vs. 6.8%, p < 0.001) and lipids (Low-density lipoprotein < 100 mg/dL: 46.4% vs. 63.5%, p < 0.001), but better blood pressure control (< 130/80 mmHg: 53.5% vs. 37.5%, p < 0.001) compared to the elderly, judging based on age-specific control targets. Prolonged diabetic duration didn't improve glycemic and composite factors control. SES like education and income impacted metabolic factors control and adults with higher SES were more likely to control well. Diabetic duration was a significant risk factor (OR = 4.006, 95%CI= (2.752,5.832), p < 0.001) while higher income (OR = 0.590, 95%CI= (0.421,0.826), p = 0.002) and educational level (OR = 0.637, 95%CI= (0.457,0.889), p = 0.008) were protective against DR. CONCLUSIONS: Working-age adults with diabetes demonstrate suboptimal metabolic profile control, especially glycemia and lipids. Additional efforts are needed to improve metabolic factor control and reduce DR risk, particularly for those with longer diabetes duration, less education, and lower incomes.

7.
Nanomaterials (Basel) ; 14(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39120385

RESUMEN

Carbon Capture, Utilization, and Storage (CCUS) stands as one of the effective means to reduce carbon emissions and serves as a crucial technical pillar for achieving experimental carbon neutrality. CO2-enhanced oil recovery (CO2-EOR) represents the foremost method for CO2 utilization. CO2-EOR represents a favorable technical means of efficiently developing extra-low-permeability reservoirs. Nevertheless, the process known as the direct injection of CO2 is highly susceptible to gas scrambling, which reduces the exposure time and contact area between CO2 and the extra-low-permeability oil matrix, making it challenging to utilize CO2 molecular diffusion effectively. In this paper, a comprehensive study involving the application of a CO2 nanobubble system in extra-low-permeability reservoirs is presented. A modified nano-SiO2 particle with pro-CO2 properties was designed using the Pickering emulsion template method and employed as a CO2 nanobubble stabilizer. The suitability of the CO2 nanobubbles for use in extra-low-permeability reservoirs was evaluated in terms of their temperature resistance, oil resistance, dimensional stability, interfacial properties, and wetting-reversal properties. The enhanced oil recovery (EOR) effect of the CO2 nanobubble system was evaluated through core experiments. The results indicate that the CO2 nanobubble system can suppress the phenomena of channeling and gravity overlap in the formation. Additionally, the system can alter the wettability, thereby improving interfacial activity. Furthermore, the system can reduce the interfacial tension, thus expanding the wave efficiency of the repellent phase fluids. The system can also improve the ability of CO2 to displace the crude oil or water in the pore space. The CO2 nanobubble system can take advantage of its size and high mass transfer efficiency, among other advantages. Injection of the gas into the extra-low-permeability reservoir can be used to block high-gas-capacity channels. The injected gas is forced to enter the low-permeability layer or matrix, with the results of core simulation experiments indicating a recovery rate of 66.28%. Nanobubble technology, the subject of this paper, has significant practical implications for enhancing the efficiency of CO2-EOR and geologic sequestration, as well as providing an environmentally friendly method as part of larger CCUS-EOR.

10.
Adv Sci (Weinh) ; : e2404792, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119825

RESUMEN

Fluorogens with aggregation-induced emission (AIEgens) are promising agents for two-photon fluorescence (TPF) imaging. However, AIEgens' photophysical properties are fixed and unoptimizable once synthesized. Therefore, it is urgent and meaningful to explore an efficient post-regulation strategy to optimize AIEgens' photophysical properties. Herein, a general and efficient post-regulation strategy is reported. By simply tuning the ratio of inert AIEgens within binary nanoparticles (BNPs), the fluorescence quantum yield and two-photon absorption cross-section of functional AIEgens are enhanced by 8.7 and 5.4 times respectively, which are not achievable by conventional strategies, and the notorious phototoxicity is almost eliminated. The experimental results, theoretical simulation, and mechanism analysis demonstrated its feasibility and generality. The BNPs enabled deep cerebrovascular network imaging with ≈1.10 mm depth and metastatic cancer cell detection with single-cell resolution. Furthermore, the TPF imaging quality is improved by the self-supervised denoising algorithm. The proposed binary molecular post-regulation strategy opened a new avenue to efficiently boost the AIEgens' photophysical properties and consequently TPF imaging quality.

11.
Adv Sci (Weinh) ; : e2405643, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119878

RESUMEN

The construction of near-infrared (NIR) light-activated hydrogen-producing materials that enable the controlled generation and high-concentration release of hydrogen molecules in deep tumor tissues and enhance the effects of hydrogen therapy holds significant scientific importance. To address the key technical challenge of low-efficiency oxidation-reduction reactions for narrow-bandgap photocatalytic materials, this work proposes an innovative approach for the controllable fabrication of multiphoton photocatalytic materials to overcome the limitations imposed by traditional near-infrared photocatalysts with "narrow-bandgap" constraints. Herein, an NIR-responsive multiphoton photocatalyst, ZrTc-Co, is developed by utilizing a post-synthetic coordination modification strategy to introduce hydrogenation active site CoII into a multiphoton responsive MOF (ZrTc). The results reveal that with the introduction of the CoII site, electron-hole recombination can be efficiently suppressed, thus promoting the efficiency of hydrogen evolution reaction. In addition, the integration of CoII can effectively enhance charge transfer and improve static hyperpolarizability, which endows ZrTc-Co with excellent multiphoton absorption. Moreover, hyaluronic acid modification endows ZrTc-Co with cancer cell-specific targeting characteristics, laying the foundation for tumor-specific elimination. Collectively, the proposed findings present a strategy for constructing NIR-II light-mediated hydrogen therapeutic agents for deep tumor elimination.

12.
Front Pharmacol ; 15: 1368776, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114359

RESUMEN

Background: The fibrous root of ginseng (GFR) is the dried thin branch root or whisker root of Ginseng (Panax ginseng C. A. Mey). It is known for its properties such as tonifying qi, producing body fluid, and quenching thirst. Clinically, it is used to treat conditions such as cough, hemoptysis, thirst, stomach deficiency, and vomiting. While GFR and Ginseng share similar metabolites, they differ in their metabolites ratios and efficacy. Furthermore, the specific role of GFR in protecting the body remains unclear. Methods: We employed ultra-high performance liquid chromatography-triple quadrupole mass spectrometry to examine alterations in brain neurotransmitters and elucidate the impact of GFR on the central nervous system. Additionally, we analyzed the serum and brain metabolic profiles of rats using ultra-high performance liquid chromatography-quadrupole-orbitrap mass spectrometry to discern the effect and underlying mechanism of GFR in delaying aging in naturally aged rats. Results: The findings of the serum biochemical indicators indicate that the intervention of GFR can enhance cardiovascular, oxidative stress, and energy metabolism related indicators in naturally aging rats. Research on brain neurotransmitters suggests that GFR can augment physiological functions such as learning and memory, while also inhibiting central nervous system excitation to a certain degree by maintaining the equilibrium of central neurotransmitters in aged individuals. Twenty-four abnormal metabolites in serum and seventeen abnormal metabolites in brain could be used as potential biomarkers and were involved in multiple metabolic pathways. Among them, in the brain metabolic pathways, alanine, aspartate and glutamate metabolism, arginine and proline metabolism, histidine metabolism, and tyrosine metabolism were closely related to central neurotransmitters. Butanoate metabolism improves energy supply for life activities in the aging body. Cysteine and methionine metabolism contributes to the production of glutathione and taurine and played an antioxidant role. In serum, the regulation of glycerophospholipid metabolism pathway and proline metabolism demonstrated the antioxidant capacity of GFR decoction. Conclution: In summary, GFR plays a role in delaying aging by regulating central neurotransmitters, cardiovascular function, oxidative stress, energy metabolism, and other aspects of the aging body, which lays a foundation for the application of GFR.

14.
Nat Commun ; 15(1): 7299, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39181897

RESUMEN

The free-field switching of the perpendicular magnetization by the out-of-plane polarized spin current induced spin-orbit torque makes it a promising technology for developing high-density memory and logic devices. The materials intrinsically with low symmetry are generally utilized to generate the spin current with out-of-plane spin polarization. However, the generation of the out-of-plane polarized spin current by engineering the symmetry of materials has not yet been reported. Here, we demonstrate that paramagnetic CaRuO3 films are able to generate out-of-plane polarized spin current by engineering the crystal symmetry. The non-uniform oxygen octahedral tilt/rotation along film's normal direction induced by oxygen octahedral coupling near interface breaks the screw-axis and glide-plane symmetries, which gives rise to a significant out-of-plane polarized spin current. This spin current can drive field-free spin-orbit torque switching of perpendicular magnetization with high efficiency. Our results offer a promising strategy based on crystal symmetry design to manipulate spin current and could have potential applications in advanced spintronic devices.

15.
Biosensors (Basel) ; 14(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39194593

RESUMEN

Dexamethasone (Dex) is a widely used glucocorticoid in medical practice, with applications ranging from allergies and inflammation to cerebral edema and shock. Despite its therapeutic benefits, Dex is classified as a prohibited substance for athletes due to its potential performance-enhancing effects. Consequently, there is a critical need for a convenient and rapid detection platform to enable prompt and accurate testing of this drug. In this study, we propose a label-free Förster Resonance Energy Transfer (FRET) aptasensor platform for Dex detection utilizing conjugated polymers (CPs), cationic conjugated polymers (CCPs), and gene finder probes (GFs). The system operates by exploiting the electrostatic interactions between positively charged CCPs and negatively charged DNA, facilitating sensitive and specific Dex detection. The label-free FRET aptasensor platform demonstrated robust performance in detecting Dex, exhibiting high selectivity and sensitivity. The system effectively distinguished Dex from interfering molecules and achieved stable detection across a range of concentrations in a commonly used sports drink matrix. Overall, the label-free FRET Dex detection system offers a simple, cost-effective, and highly sensitive approach for detecting Dex in diverse sample matrices. Its simplicity and effectiveness make it a promising tool for anti-doping efforts and other applications requiring rapid and accurate Dex detection.


Asunto(s)
Técnicas Biosensibles , Cationes , Dexametasona , Transferencia Resonante de Energía de Fluorescencia , Polímeros , Dexametasona/análisis , Polímeros/química , Aptámeros de Nucleótidos/química , ADN , Humanos , Límite de Detección
16.
J Adv Res ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197817

RESUMEN

INTRODUCTION: Simultaneous detection of proteins and mRNA within a single extracellular vesicle (EV) enables comprehensive analysis of specific EVs subpopulations, significantly advancing cancer diagnostics. However, developing a sensitive and user-friendly approach for simultaneously detecting multidimensional biomarkers in single EV is still challenging. OBJECTIVES: To facilitate the analysis of multidimensional biomarkers in EVs and boost its clinical application, we present a versatile droplet digital system facilitating the concurrent detection of membrane proteins and mRNA at the single EV level with high sensitivity and specificity. METHODS: The antibody-DNA conjugates were firstly prepared for EVs protein biomarkers recognition and signal transformation. Coupling with the assembled triplex droplet digital PCR system, a versatile droplet digital analysis assay for simultaneous detection of membrane protein and mRNA at a single EV level was developed. RESULTS: Our new droplet digital system displayed high sensitivity and specificity. Additionally, its clinical application was validated in a breast cancer cohort. As expected, this assay has demonstrated superior performance in distinguishing breast cancer from healthy individuals and benign controls through combined detection of EVs protein and mRNA markers compared to any single kind marker detections, especially for patients with breast cancer at early stage (AUC=0.9229). CONCLUSION: Consequently, this study proposes a promising strategy for accurately identifying and analyzing specific EV subgroups through the co-detection of proteins and mRNA at the single EV level, holding significant potential for future clinical applications.

17.
J Chromatogr A ; 1733: 465280, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39173504

RESUMEN

Quaternary phosphonium compounds (QPCs) and phosphine oxides (POs) are emerging contaminants that are attracting increasing attention. In the present study, a method for the quantification of QPCs and POs in multiple environmental media was developed using ultrahigh performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Analytes were extracted from water samples using solid phase extraction, and for the solid samples, ultrasonic extraction was employed. Compared with analytical methods established by previous studies, the approach developed in this study is more suitable for the quantitative analysis of compounds along with high sensitivity. The method quantification limit reached 0.12-2.55 ng⋅L-1 in water samples and 0.004-0.10 ng⋅g-1 in solid samples. The recoveries of target analytes spiked at low, medium and high concentrations in water and solid samples were in the range of 56.4-120 %, with relative standard deviations below 20 % (n = 6). Furthermore, the validated method succeeded in applying to analyse of eight QPCs and four POs in real environmental samples. At least five QPCs and two POs were detected in each environmental medium. This quantitative method would assist in further investigations on the occurrence, migration and the source of QPCs and POs.

18.
PLoS One ; 19(8): e0308815, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39163298

RESUMEN

OBJECTIVE: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, and previous observational epidemiological studies have suggested an association between MS and male infertility; male infertility due to sperm abnormalities may result from a number of aetiological factors, such as genetics, autoimmune factors, etc., and there are currently no studies to assess whether MS is associated with sperm abnormalities in men. Therefore, we performed a Mendelian randomization (MR) analysis to assess the causal relationship between MS and abnormal spermatozoa. METHODS: In this study, independent single nucleotide polymorphisms (SNPs) strongly associated with multiple sclerosis (MS) were identified by mining public genome-wide association study repositories and used as instrumental variables to explore causality. The causal effect of MS on sperm abnormalities was systematically assessed using two-sample Mendelian randomization (MR) techniques, and various analytical models such as inverse variance weighting (IVW), MR-Egger and MR-PRESSO were implemented to dissect the association. In addition, a wide range of sensitivity tests, including Cochran's Q test to detect heterogeneity, MR-Egger intercept analysis to assess bias, leave-one-out to test model robustness, and funnel plot analysis to detect potential publication bias, were implemented to ensure the robustness and reliability of the causal inference results. RESULTS: There was a significant causal relationship between MS and abnormal sperm (OR 1.090, 95% CI [1.017-1.168], p = 0.014); The accuracy and robustness of the results were confirmed by sensitivity analysis. CONCLUSION: Here we show that there appears to be a causal relationship between multiple sclerosis and abnormal spermatozoa. MS as a chronic disease has a higher risk of concomitant sperm abnormalities in its male patients, and reproductive and fertility issues in men with MS should receive special attention from clinicians.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Esclerosis Múltiple , Polimorfismo de Nucleótido Simple , Espermatozoides , Humanos , Masculino , Esclerosis Múltiple/genética , Espermatozoides/patología , Espermatozoides/metabolismo , Infertilidad Masculina/genética
19.
iScience ; 27(8): 110524, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39165846

RESUMEN

RNA methylation has emerged as a dynamic regulatory mechanism that impacts gene expression and protein synthesis. Among the known RNA methylation modifications, N6-methyladenosine (m6A), 5-methylcytosine (m5C), 3-methylcytosine (m3C), and N7-methylguanosine (m7G) have been studied extensively. In particular, m6A is the most abundant RNA modification and has attracted significant attention due to its potential effect on multiple biological processes. Recent studies have demonstrated that RNA methylation plays an important role in the development and progression of cardiovascular disease (CVD). To identify key pathogenic genes of CVD and potential therapeutic targets, we reviewed several common RNA methylation and summarized the research progress of RNA methylation in diverse CVDs, intending to inspire effective treatment strategies.

20.
Huan Jing Ke Xue ; 45(8): 4375-4384, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168658

RESUMEN

PM2.5 pollution remains prominent in autumn, whereas O3 pollution gradually manifests in summer. To understand the dual high characteristics and meteorological effects of PM2.5 and O3 in the summer and early autumn of 2021 in the Beijing-Tianjin-Hebei and surrounding areas, the spatiotemporal distribution characteristics of PM2.5 and O3 concentrations, as well as meteorological conditions, subtropical high index, and weather situation in the Beijing-Tianjin-Hebei and surrounding areas were analyzed. The results showed that PM2.5 concentration and DPO3 (O3 daily maximum 8h mean minus O3 concentration at 06:00) from June to September 2021 decreased compared with those in the same period in 2020 and 2022, and high concentrations were mainly occurring in June. The overall PM2.5 concentration and DPO3 showed a gradual decrease from the middle to the north and south, with synchronous spatiotemporal changes. The hourly value of PM2.5 concentration presented a multimodal distribution, reaching the peak at 07:00-10:00 and 22:00-24:00. O3 concentration showed an opposite trend of change with PM2.5 concentration, reaching their peak from 14:00-16:00. When DPO3 and the concentration of PM2.5 were high, the characteristics of near-surface meteorological elements were characterized by temperatures ranging from 24.0-28.0℃, relative humidity concentrated at 58.4%-76.3%, and wind speeds ranging from 1.5-3 m·s-1. There was a high lag correlation between the subtropical high index and DPO3. When the subtropical high was farther and stronger from the Beijing-Tianjin-Hebei and surrounding areas, DPO3 was higher. The major weather patterns with both high PM2.5 and O3 concentrations in the study area were near surface low-pressure front, high-pressure type, and frontal type. The high altitude was controlled by high-pressure ridges, and the subtropical high ridge line was stable between 21°-28°N.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA