Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.611
Filtrar
1.
Neural Regen Res ; 20(5): 1350-1363, 2025 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-39075896

RESUMEN

The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.

2.
Front Pharmacol ; 15: 1369563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170700

RESUMEN

With the advancing comprehension of immunology, an increasing number of immunotherapies are being explored and implemented in the field of cancer treatment. The cGAS-STING pathway, a crucial element of the innate immune response, has been identified as pivotal in cancer immunotherapy. We evaluated the antitumor effects of Schisandra chinensis lignan component Schisandrin C (SC) in 4T1 and MC38 tumor-bearing mice, and studied the enhancing effects of SC on the cGAS-STING pathway and antitumor immunity through RNA sequencing, qRT-PCR, and flow cytometry. Our findings revealed that SC significantly inhibited tumor growth in models of both breast and colon cancer. This suppression of tumor growth was attributed to the activation of type I IFN response and the augmented presence of T cells and NK cells within the tumor. Additionally, SC markedly promoted the cGAS-STING pathway activation induced by cisplatin. In comparison to cisplatin monotherapy, the combined treatment of SC and cisplatin exhibited a greater inhibitory effect on tumor growth. The amplified chemotherapeutic efficacy was associated with an enhanced type I IFN response and strengthened antitumor immunity. SC was shown to reduce tumor growth and increase chemotherapy sensitivity by enhancing the type I IFN response activation and boosting antitumor immunity, which enriched the research into the antitumor immunity of S. chinensis and laid a theoretical basis for its application in combating breast and colon cancer.

3.
Chin Med J Pulm Crit Care Med ; 2(1): 48-55, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39170961

RESUMEN

Background: The impact of corticosteroids on humoral responses in coronavirus disease 2019 (COVID-19) survivors during the acute phase and subsequent 6-month period remains unknown. This study aimed to determine how the use of corticosteroids influences the initiation and duration of humoral responses in COVID-19 survivors 6 months after infection onset. Methods: We used kinetic antibody data from the lopinavir-ritonavir trial conducted at Jin Yin-Tan Hospital in January 2020, which involved adults hospitalized with severe COVID-19 (LOTUS, ChiCTR2000029308). Antibody samples were collected from 192 patients during hospitalization, and kinetic antibodies were monitored at all available time points after recruitment. Additionally, plasma samples were collected from 101 COVID-19 survivors for comprehensive humoral immune measurement at the half-year follow-up visit. The main focus was comparing the humoral responses between patients treated with systemic corticosteroid therapy and the non-corticosteroid group. Results: From illness onset to day 30, the median antibody titre areas under the receiver operating characteristic curve (AUCs) of nucleoprotein (N), spike protein (S), and receptor-binding domain (RBD) immunoglobulin G (IgG) were significantly lower in the corticosteroids group. The AUCs of N-, S-, and RBD-IgM as well as neutralizing antibodies (NAbs) were numerically lower in the corticosteroids group compared with the non-corticosteroid group. However, peak titres of N, S, RBD-IgM and -IgG and NAbs were not influenced by corticosteroids. During 6-month follow-up, we observed a delayed decline for most binding antibodies, except N-IgM (ß -0.05, 95% CI [-0.10, 0.00]) in the corticosteroids group, though not reaching statistical significance. No significant difference was observed for NAbs. However, for the half-year seropositive rate, corticosteroids significantly accelerated the decay of IgA and IgM but made no difference to N-, S-, and RBD-IgG or NAbs. Additionally, corticosteroids group showed a trend towards delayed viral clearance compared with the non-corticosteroid group, but the results were not statistically significant (adjusted hazard ratio 0.71, 95% CI 0.50-1.00; P = 0.0508). Conclusion: Our findings suggested that corticosteroid therapy was associated with impaired initiation of the antibody response but this did not compromise the peak titres of binding and neutralizing antibodies. Throughout the decay phase, from the acute phase to the half-year follow-up visit, short-term and low-dose corticosteroids did not significantly affect humoral responses, except for accelerating the waning of short-lived antibodies.

4.
World J Gastrointest Oncol ; 16(8): 3705-3715, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39171170

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related death. Over the past two decades, numerous researchers have provided important evidence regarding the role of tight junction (TJ) proteins in the occurrence and progression of CRC. The causal relationship between the presence of specific TJ proteins and the development of CRC has also been confirmed. Despite the large number of publications in this field, a bibliometric study to review the current state of research and highlight the research trends and hotspots in this field has not yet been performed. AIM: To analyze research on TJs and CRC, summarize the field's history and current status, and predict future research directions. METHODS: We searched the Science Citation Index Expanded database for all literature on CRC and TJs from 2001-2023. We used bibliometrics to analyze the data of these papers, such as the authors, countries, institutions, and references. Co-authorship, co-citation, and co-occurrence analyses were the main methods of analysis. CiteSpace and VOSviewer were used to visualize the results. RESULTS: A total of 205 studies were ultimately identified. The number of publications on this topic has steadily increased since 2007. China and the United States have made the largest contributions to this field. Anticancer Research was the most prolific journal, publishing 8 articles, while the journal Oncogene had the highest average citation rate (68.33). Professor Dhawan P was the most prolific and cited author in this field. Co-occurrence analysis of keywords revealed that "tight junction protein expression", "colorectal cancer", "intestinal microbiota", and "inflammatory bowel disease" had the highest frequency of occurrence, revealing the research hotspots and trends in this field. CONCLUSION: This bibliometric analysis evaluated the scope and trends of TJ proteins in CRC, providing valuable research perspectives and future directions for studying the connection between the two. It is recommended to focus on emerging research hotspots, such as the correlations among intestinal microbiota, inflammatory bowel disease, TJ protein expression, and CRC.

5.
Metabolites ; 14(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39195558

RESUMEN

Currently, the clinical cure rate for primary liver cancer remains low. Effective screening and early diagnosis of hepatocellular carcinoma (HCC) remain clinical challenges. Exosomes are intimately associated with tumor development and their contents have the potential to serve as highly sensitive tumor-specific markers. A comprehensive untargeted metabolomics study was conducted using exosome samples extracted from the serum of 48 subjects (36 HCC patients and 12 healthy controls) via a commercial kit. An ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) strategy was used to identify the metabolic compounds. A total of 18 differential metabolites were identified using the non-targeted metabolomics approach of UPLC-QTOF-MS/MS. Pathway analysis revealed significant alterations in the arachidonic acid metabolism, linoleic acid metabolism, and unsaturated fatty acid metabolism pathways. ROC analysis indicated that three metabolites with AUC values exceeding 0.900 were selected as potential biomarkers: caprylic acid and linoleic acid were upregulated in the HCC group, whereas pentadecanoic acid was downregulated. Linoleic acid, caprylic acid, and pentadecanoic acid are potential biomarkers for diagnosing HCC. The significant alterations in these three metabolic pathways offer new insights into the mechanisms underlying HCC formation and progression.

6.
MedComm (2020) ; 5(9): e685, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39156764

RESUMEN

Chimeric RNAs, distinct from DNA gene fusions, have emerged as promising therapeutic targets with diverse functions in cancer treatment. However, the functional significance and therapeutic potential of most chimeric RNAs remain unclear. Here we identify a novel fusion transcript of solute carrier family 2-member 11 (SLC2A11) and macrophage migration inhibitory factor (MIF). In this study, we investigated the upregulation of SLC2A11-MIF in The Cancer Genome Atlas cohort and a cohort of patients from Sun Yat-Sen Memorial Hospital. Subsequently, functional investigations demonstrated that SLC2A11-MIF enhanced the proliferation, antiapoptotic effects, and metastasis of bladder cancer cells in vitro and in vivo. Mechanistically, the fusion protein encoded by SLC2A11-MIF interacted with polypyrimidine tract binding protein 1 (PTBP1) and regulated the mRNA half-lives of Polo Like Kinase 1, Roundabout guidance receptor 1, and phosphoinositide-3-kinase regulatory subunit 3 in BCa cells. Moreover, PTBP1 knockdown abolished the enhanced impact of SLC2A11-MIF on biological function and mRNA stability. Furthermore, the expression of SLC2A11-MIF mRNA is regulated by CCCTC-binding factor and stabilized through RNA N4-acetylcytidine modification facilitated by N-acetyltransferase 10. Overall, our findings revealed a significant fusion protein orchestrated by the SLC2A11-MIF-PTBP1 axis that governs mRNA stability during the multistep progression of bladder cancer.

7.
Perfusion ; : 2676591241271995, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134505

RESUMEN

OBJECTIVES: To investigate the effect of targeted nursing intervention on the short-term prognosis of patients with coronary heart disease and carotid artery stenosis undergoing synchronous coronary artery bypass grafting (CABG) and carotid endarterectomy (CEA). METHODS: A total of 58 patients who received OPCABG + CEA from February 2018 to May 2021 at the Beijing Anzhen Hospital were selected as the study subjects. They were randomly divided into two groups, with 29 patients in each group. The control group received routine postoperative nursing care, while the observation group received targeted nursing intervention in addition to the routine care. The incidence of postoperative stroke and the length of postoperative stay were observed. RESULTS: There were no statistically significant differences in baseline data between the two groups. Postoperative acute stroke occurred in 2 cases (6.9%) in the control group and 0 cases in the observation group, although this difference was not statistically significant. The median postoperative hospital stay was 13 days in the control group, with the earliest discharge at 10 days. In the observation group, the median postoperative hospital stay was 10 days, with the earliest discharge on the 8th day. This difference was statistically significant. CONCLUSIONS: Targeted nursing intervention can improve the short-term prognosis of patients with coronary heart disease and carotid artery stenosis undergoing OPCABG + CEA, and it can also shorten the length of postoperative hospital stay.

8.
J Comput Chem ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135268

RESUMEN

The two-dimensional (2D) monolayer material MoSi2N4 was successfully synthesized in 2020[Hong et al., Science 369, 670, (2020)], exhibiting a plethora of new phenomena and unusual properties, with good stability at room temperature. However, MA2Z4 family monolayer materials involve primarily transition metal substitutions for M atoms. In order to address the research gap on lanthanide and actinide MA2Z4 materials, this work conducts electronic structure calculations on novel 2D MSi2N4 (M = La, Eu) monolayer materials by employing first-principles methods and CASTEP. High carrier mobility is discovered in the indirect bandgap semiconductor 2D LaSi2N4 monolayer (~5400 cm2 V-1 s-1) and in the spin (spin-down channel) carrier mobility of the half-metallic ferromagnetic EuSi2N4 monolayer (~2800 cm2 V-1 s-1). EuSi2N4 monolayer supplements research on spin carrier mobility in half-metallic ferromagnetic monolayer materials at room temperature and possesses a magnetic moment of 5 µB, which should not be underestimated. Furthermore, due to the unique electronic band structure of EuSi2N4 monolayer (with the spin-up channel exhibiting metallic properties and the spin-down channel exhibiting semiconductor properties), it demonstrates a 100% spin polarization rate, presenting significant potential applications in fields such as magnetic storage, magnetic sensing, and spintronics.

9.
Langmuir ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39135515

RESUMEN

Rapid, reagent-free, and ultrasensitive analysis of cardiac troponin I (cTnI) is of significance for early diagnosis of acute myocardial infarction (AMI). The electrochemical aptamer-based (EAB) sensors are promising candidates to fill this role as they are reagentless and can be directly interrogated in complex matrices (e.g., blood). To achieve high sensitivity, EAB sensors typically require nanomaterials or other amplification strategies, which often involves a cumbersome fabrication process. To circumvent this, here we develop a simple yet effective electrocatalytic electrochemical aptamer-based (Ec-EAB) sensor that utilizes target-induced regulation of the catalytic mechanism to achieve ultrasensitive measurement of cTnI. In this assay, we employed a probe-attached redox reporter (i.e., methylene blue, MB) and a solution-diffusive redox reporter (i.e., Fe(CN)63-) to generate two signals, of which the latter is used to catalyze MB to amplify aptamer-mediated charge transfer. The recognition of target altered the diffusion of catalysts (2.2 × 10-9 mol/cm2 in the target-free state versus 1.2 × 10-9 mol/cm2 in the target-bound state) and thus electrocatalytical efficiency, enabling ultrasensitive measurement of cTnI with a 1000-fold improvement in their sensitivity (a limit of detection value: 10 pg/mL).

10.
Front Oncol ; 14: 1298710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114306

RESUMEN

Objective: To investigate the diagnostic efficacy of the clinical ultrasound imaging model, ultrasonographic radiomics model, and comprehensive model based on ultrasonographic radiomics for the differentiation of small clear cell Renal Cell Carcinoma (ccRCC) and Renal Angiomyolipoma (RAML). Methods: The clinical, ultrasound, and contrast-enhanced CT(CECT) imaging data of 302 small renal tumors (maximum diameter ≤ 4cm) patients in Tianjin Medical University Cancer Institute and Hospital from June 2018 to June 2022 were retrospectively analyzed, with 182 patients of ccRCC and 120 patients of RAML. The ultrasound images of the largest diameter of renal tumors were manually segmented by ITK-SNAP software, and Pyradiomics (v3.0.1) module in Python 3.8.7 was applied to extract ultrasonographic radiomics features from ROI segmented images. The patients were randomly divided into training and internal validation cohorts in the ratio of 7:3. The Random Forest algorithm of the Sklearn module was applied to construct the clinical ultrasound imaging model, ultrasonographic radiomics model, and comprehensive model. The efficacy of the prediction models was verified in an independent external validation cohort consisting of 69 patients, from 230 small renal tumor patients in two different institutions. The Delong test compared the predictive ability of three models and CECT. Calibration Curve and clinical Decision Curve Analysis were applied to evaluate the model and determine the net benefit to patients. Results: 491 ultrasonographic radiomics features were extracted from 302 small renal tumor patients, and 9 ultrasonographic radiomics features were finally retained for modeling after regression and dimensionality reduction. In the internal validation cohort, the area under the curve (AUC), sensitivity, specificity, and accuracy of the clinical ultrasound imaging model, ultrasonographic radiomics model, comprehensive model, and CECT were 0.75, 76.7%, 60.0%, 70.0%; 0.80, 85.6%, 61.7%, 76.0%; 0.88, 90.6%, 76.7%, 85.0% and 0.90, 92.6%, 88.9%, 91.1%, respectively. In the external validation cohort, AUC, sensitivity, specificity, and accuracy of the three models and CECT were 0.73, 67.5%, 69.1%, 68.3%; 0.89, 86.7%, 80.0%, 83.5%; 0.90, 85.0%, 85.5%, 85.2% and 0.91, 94.6%, 88.3%, 91.3%, respectively. The DeLong test showed no significant difference between the clinical ultrasound imaging model and the ultrasonographic radiomics model (Z=-1.287, P=0.198). The comprehensive model showed superior diagnostic performance than the ultrasonographic radiomics model (Z=4. 394, P<0.001) and the clinical ultrasound imaging model (Z=4. 732, P<0.001). Moreover, there was no significant difference in AUC between the comprehensive model and CECT (Z=-0.252, P=0.801). Both in the internal and external validation cohort, the Calibration Curve and Decision Curve Analysis showed a better performance of the comprehensive model. Conclusion: It is feasible to construct an ultrasonographic radiomics model for distinguishing small ccRCC and RAML based on ultrasound images, and the diagnostic performance of the comprehensive model is superior to the clinical ultrasound imaging model and ultrasonographic radiomics model, similar to that of CECT.

11.
Food Chem ; 460(Pt 3): 140689, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39116767

RESUMEN

Residues of pesticides in milk may pose a threat to human health. This study aimed to develop a liquid-phase microextraction (LPME) method using hexafluoroisopropanol (HFIP)-based supramolecular solvent (SUPRAS) for the simultaneous extraction and purification of four pesticides (boscalid, novaluron, cypermethrin and bifenthrin) in milk. Pesticides were extracted using SUPRAS prepared with nonanol and HFIP, and the extraction efficiency was analyzed. Results showed satisfactory recoveries ranging from 80.8%-111.0%, with relative standard deviations (RSDs) of <6.4%. Additionally, satisfactory linearities were observed, with correlation coefficients >0.9952. The limits of quantification (LOQs) were in the range of 1.8 µg·L-1-14.0 µg·L-1. The established method demonstrated high extraction efficiency with a short operation time (15 mins) and low solvent consumption (2.7 mL). The HFIP-based SUPRAS LPME method offers a convenient and efficient approach for the extraction of pesticides from milk, presenting a promising alternative to conventional techniques.

12.
Cell Div ; 19(1): 25, 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39098910

RESUMEN

BACKGROUND: Nuclear-enriched abundant transcript 1 (NEAT1), a long noncoding RNA (lncRNA), has been implicated in the colorectal cancer (CRC) progression. However, its upstream mechanism has not been well studied. In the present study, the functions and mechanisms of NEAT1 in CRC were investigated. METHODS: The NEAT1 expression in CRC tissues and CRC cells was analyzed by RT-qPCR. The genes co-expressed with NEAT1 in CRC were obtained from UALCAN, which were intersected with the transcription factors targeting NEAT1 from hTFtarget. Dual-luciferase assay, RT-qPCR, and ChIP were conducted to analyze the transcriptional regulatory relationship between BHLHE40 and NEAT1. LoVo and HCT-15 cells knocking down BHLHE40 and overexpressing NEAT1 were subjected to MTT, Transwell, Western blot, and flow cytometry to examine the malignant aggressiveness of CRC cells. The effects of knocking down BHLHE40 and overexpressing NEAT1 on tumor and lung metastasis were investigated in mice using HE and immunohistochemical analyses. RESULTS: NEAT1 and BHLHE40 were significantly overexpressed in CRC tissues and cells. BHLHE40 has a binding relationship with the NEAT1 promoter. Knockdown of BHLHE40 resulted in a reverted malignant phenotype in vitro and slowed tumor growth and metastasis dissemination in vivo, which were reversed by NEAT1 overexpression. Overexpression of BHLHE40 increased Wnt/ß-catenin pathway activity, but knockdown of NEAT1 decreased Wnt/ß-catenin pathway activity. CONCLUSIONS: BHLHE40 mediates the transcriptional activation of NEAT1, which activates the Wnt/ß-catenin pathway and promotes the CRC progression.

13.
Front Public Health ; 12: 1367644, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104887

RESUMEN

Introduction: Persistent infections caused by certain viruses and parasites have been associated with multiple diseases and substantial mortality. Heavy metals are ubiquitous environmental pollutants with immunosuppressive properties. This study aimed to determine whether heavy metals exposure suppress the immune system, thereby increasing the susceptibility to persistent infections. Methods: Using data from NHANES 1999-2016, we explored the associations between heavy metals exposure and persistent infections: Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Hepatitis C Virus (HCV), Herpes Simplex Virus Type-1 (HSV-1), Toxoplasma gondii (T. gondii), and Toxocara canis and Toxocara cati (Toxocara spp.) by performing logistic regression, weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models. Mediation analysis was used to determine the mediating role of host immune function in these associations. Results: Logistic regression analysis revealed positive associations between multiple heavy metals and the increased risk of persistent infections. In WQS models, the heavy metals mixture was associated with increased risks of several persistent infections: CMV (OR: 1.58; 95% CI: 1.17, 2.14), HCV (OR: 2.94; 95% CI: 1.68, 5.16), HSV-1 (OR: 1.25; 95% CI: 1.11, 1.42), T. gondii (OR: 1.97; 95% CI: 1.41, 2.76), and Toxocara spp. (OR: 1.76; 95% CI: 1.16, 2.66). BKMR models further confirmed the combined effects of heavy metals mixture and also identified the individual effect of arsenic, cadmium, and lead. On mediation analysis, the systemic immune inflammation index, which reflects the host's immune status, mediated 12.14% of the association of mixed heavy metals exposure with HSV-1 infection. Discussion: The findings of this study revealed that heavy metals exposure may increase susceptibility to persistent infections, with the host's immune status potentially mediating this relationship. Reducing exposure to heavy metals may have preventive implications for persistent infections, and further prospective studies are needed to confirm these findings.


Asunto(s)
Exposición a Riesgos Ambientales , Metales Pesados , Humanos , Femenino , Masculino , Exposición a Riesgos Ambientales/efectos adversos , Adulto , Persona de Mediana Edad , Modelos Logísticos , Contaminantes Ambientales/toxicidad , Teorema de Bayes , Virosis/inmunología , Animales
15.
Adv Mater ; : e2405860, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39108194

RESUMEN

Narrow-bandgap Sn-Pb alloying perovskites showcased great potential in constructing multiple-junction perovskite solar cells (PSCs) with efficiencies approaching or exceeding the Shockley-Queisser limit. However, the uncontrollable surface metal abundance (Sn2+ and Pb2+ ions) hinders their efficiency and versatility in different device structures. Additionally, the undesired Pb distribution mainly at the buried interface accelerates the Pb leakage when devices are damaged. In this work, a novel strategy is presented to modulate crystallization kinetics and surface metal abundance of Sn-Pb perovskites using a cobweb-like quadrangular macrocyclic porphyrin material, which features a molecular size compatible with the perovskite lattice and robustly coordinates with Pb2+ ions, thus immobilizing them and increasing surface Pb abundance by 61%. This modulation reduces toxic Pb leakage rates by 24-fold, with only ∼23 ppb Pb in water after severely damaged PSCs are immersed in water for 150 h.This strategy can also enhance chemical homogeneity, reduce trap density, release tensile strain and optimize carrier dynamics of Sn-Pb perovskites and relevant devices. Encouragingly, the power conversion efficiency (PCEs) of 23.28% for single-junction, full-stack devices and 21.34% for hole transport layer-free Sn-Pb PSCs are achieved.Notably, the related monolithic all-perovskite tandem solar cell also achieves a PCE of 27.03% with outstanding photostability.

16.
Emerg Microbes Infect ; : 2387450, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129565

RESUMEN

AbstractThroughout history, the influenza A virus has caused numerous devastating global pandemics. Macrophages, as pivotal innate immune cells, exhibit a wide range of immune functions characterized by distinct polarization states, reflecting their intricate heterogeneity. In this study, we employed the time-resolved single-cell sequencing technique coupled with metabolic RNA labelling to elucidate the dynamic transcriptional changes in distinct polarized states of bone marrow-derived macrophages (BMDMs) upon infection with the influenza A virus. Our approach not only captures the temporal dimension of transcriptional activity, which is lacking in conventional scRNA-seq methods, but also reveals that M2-polarized Arg1_macrophages is the sole state supporting successful replication of influenza A virus. Furthermore, we identified distinct antigen presentation capabilities to CD4+ T and CD8+ T cells across diverse polarized states of macrophages. Notably, the M1 phenotype, exhibited by both bone marrow-derived macrophages (BMDMs) and murine alveolar macrophages (AMs), demonstrated superior conventional and cross-presentation abilities for exogenous antigens, with a particular emphasis on cross-presentation capacity. Additionally, as CD8+ T cell differentiation progressed, M1 polarization exhibited an enhanced capacity for cross-presentation. All three phenotypes of BMDMs, including M1, demonstrated robust presentation of CD4+ regulatory T cells, while displaying limited ability to present naive CD4+ T cells. These findings offer novel insights into the immunological regulatory mechanisms governing distinct polarized states of macrophages, particularly their roles in restricting the replication of influenza A virus and modulating antigen-specific T cell responses through innate immunity.

17.
Plant Sci ; 348: 112208, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39089330

RESUMEN

Chloroplast development underpins plant growth, by facilitating not only photosynthesis but also other essential biochemical processes. Nonetheless, the regulatory mechanisms and functional components of chloroplast development remain largely uncharacterized due to their complexity. In our study, we identified a plastid-targeted gene, ATYCO/RP8/CDB1, as a critical factor in early chloroplast development in Arabidopsis thaliana. YCO knock-out mutant (yco) exhibited a seedling-lethal, albino phenotype, resulting from dysfunctional chloroplasts lacking thylakoid membranes. Conversely, YCO knock-down mutants produced a chlorophyll-deficient cotyledon and normal leaves when supplemented with sucrose. Transcription analysis also revealed that YCO deficiency could be partially compensated by sucrose supplementation, and that YCO played different roles in the cotyledons and the true leaves. In YCO knock-down mutants, the transcript levels of plastid-encoded RNA polymerase (PEP)-dependent genes and nuclear-encoded photosynthetic genes, as well as the accumulation of photosynthetic proteins, were significantly reduced in the cotyledons. Moreover, the chlorophyll-deficient phenotype in YCO knock-down line can be effectively suppressed by inhibition of PSI cyclic electron transport activity, implying an interaction between YCO and PSI cyclic electron transport. Taken together, our findings de underscore the vital role of YCO in early chloroplast development and photosynthesis.

18.
Sci Rep ; 14(1): 18293, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112658

RESUMEN

The cytokine interleukin-6 (IL-6) plays a crucial role in autoimmune and inflammatory diseases. Understanding the precise mechanism of IL-6 interaction at the amino acid level is essential to develop IL-6-inhibiting compounds. In this study, we employed computer-guided drug design tools to predict the key residues that are involved in the interaction between IL-6 and its receptor IL-6R. Subsequently, we generated IL-6 mutants and evaluated their binding affinity to IL-6R and the IL-6R - gp130 complex, as well as monitoring their biological activities. Our findings revealed that the R167A mutant exhibited increased affinity for IL-6R, leading to enhanced binding to IL-6R - gp130 complex and subsequently elevated intracellular phosphorylation of STAT3 in effector cells. On the other hand, although E171A reduced its affinity for IL-6R, it displayed stronger binding to the IL-6R - gp130 complex, thereby enhancing its biological activity. Furthermore, we identified the importance of R178 and R181 for the precise recognition of IL-6 by IL-6R. Mutants R181A/V failed to bind to IL-6R, while maintaining an affinity for the IL-6 - gp130 complex. Additionally, deletion of the D helix resulted in complete loss of IL-6 binding affinity for IL-6R. Overall, this study provides valuable insights into the binding mechanism of IL-6 and establishes a solid foundation for future design of novel IL-6 inhibitors.


Asunto(s)
Interleucina-6 , Simulación del Acoplamiento Molecular , Unión Proteica , Receptores de Interleucina-6 , Interleucina-6/metabolismo , Interleucina-6/genética , Humanos , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/química , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/genética , Receptor gp130 de Citocinas/química , Mutagénesis Sitio-Dirigida , Sitios de Unión , Factor de Transcripción STAT3/metabolismo , Fosforilación , Mutación
19.
Science ; 385(6709): eado7010, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39116252

RESUMEN

Ketamine has been found to have rapid and potent antidepressant activity. However, despite the ubiquitous brain expression of its molecular target, the N-methyl-d-aspartate receptor (NMDAR), it was not clear whether there is a selective, primary site for ketamine's antidepressant action. We found that ketamine injection in depressive-like mice specifically blocks NMDARs in lateral habenular (LHb) neurons, but not in hippocampal pyramidal neurons. This regional specificity depended on the use-dependent nature of ketamine as a channel blocker, local neural activity, and the extrasynaptic reservoir pool size of NMDARs. Activating hippocampal or inactivating LHb neurons swapped their ketamine sensitivity. Conditional knockout of NMDARs in the LHb occluded ketamine's antidepressant effects and blocked the systemic ketamine-induced elevation of serotonin and brain-derived neurotrophic factor in the hippocampus. This distinction of the primary versus secondary brain target(s) of ketamine should help with the design of more precise and efficient antidepressant treatments.


Asunto(s)
Antidepresivos , Depresión , Habénula , Ketamina , Receptores de N-Metil-D-Aspartato , Animales , Masculino , Ratones , Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Depresión/tratamiento farmacológico , Depresión/metabolismo , Habénula/efectos de los fármacos , Habénula/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ketamina/farmacología , Ketamina/administración & dosificación , Ratones Endogámicos C57BL , Ratones Noqueados , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Serotonina/metabolismo
20.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094099

RESUMEN

Design-based STEM learning is believed to be an effective cross-disciplinary strategy for promoting children's cognitive development. Yet, its impact on executive functions, particularly for disadvantaged children, still need to be explored. This study investigated the effects of short-term intensive design-based STEM learning on executive function among left-behind children. Sixty-one Grade 4 students from a school dedicated to the left-behind children in China were sampled and randomly assigned to an experimental group (10.70 ± 0.47 years old, n = 30) or a control group (10.77 ± 0.43 years old, n = 31). The experimental group underwent a two-week design-based STEM training program, while the control group participated in a 2-week STEM-related reading program. Both groups were assessed with the brain activation from 4 brain regions of interest using functional near-infrared spectroscopy (fNIRS) and behavioral measures during a Stroop task before and after the training. Analysis disclosed: (i) a significant within-group time effect in the experimental group, with posttest brain activation in Brodmann Area 10 and 46 being notably lower during neutral and word conditions; (ii) a significant between-group difference at posttest, with the experimental group showing considerably lower brain activation in Brodmann Area 10 and Brodmann Area 46 than the control group; and (iii) a significant task effect in brain activity among the three conditions of the Stroop task. These findings indicated that this STEM learning effectively enhanced executive function in left-behind children. The discrepancy between the non-significant differences in behavioral performance and the significant ones in brain activation implies a compensatory mechanism in brain activation. This study enriches current theories about the impact of Science, Technology, Engineering, and Mathematics (STEM) learning on children's executive function development, providing biological evidence and valuable insights for educational curriculum design and assessment.


Asunto(s)
Función Ejecutiva , Aprendizaje , Espectroscopía Infrarroja Corta , Humanos , Función Ejecutiva/fisiología , Masculino , Femenino , Espectroscopía Infrarroja Corta/métodos , Niño , Aprendizaje/fisiología , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Lectura , Matemática , Test de Stroop , Lateralidad Funcional/fisiología , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA