Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.204
Filtrar
1.
Chembiochem ; : e202400635, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252178

RESUMEN

Azobenzene (Azo) and its derivatives are versatile stimuli-responsive molecules. Their reversible photoisomerization and susceptibility to reduction-mediated cleavage make them valuable for various biomedical applications. Upon exposure to the UV light, Azo units undergo a thermodynamically stable trans-to-cis transition, which can be reversed by heating in the dark or irradiation with visible light. Additionally, the N=N bonds in azobenzenes can be cleaved under hypoxic conditions by azoreductase, making azobenzenes useful as hypoxia-responsive linkers. The integration of azobenzenes into nanomedicines holds promise for enhancing therapeutic efficacy, particularly in tumor targeting and controllable drug release. In this Concept paper, recent advances in the design and applications of azobenzene-based nanomedicines are updated, and future development opportunities are also summarized.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39231017

RESUMEN

In this work, an efficient and robust hole transport layer (HTL) based on blended poly((9,9-dioctylfluorenyl-2,7-diyl)-alt-(9-(2-ethylhexyl)-carbazole-3,6-diyl)) (PF8Cz) and crosslinkable 3,3'-(9,9-dimethyl-9H-fluorene-2,7-diyl)bis(9-(4-vinylphenyl)-9H-carbazole) (FLCZ-V) is introduced for high-performance and stable blue quantum dot-based light-emitting diodes (QLEDs), wherein FLCZ-V can in situ-crosslink to a continuous network polymer after thermal treatment and the linear polymer PF8CZ becomes intertwined and imprisoned. As a result, the blended HTL shows a high hole mobility (1.27 × 10-4 cm2 V-1 s-1) and gradient HOMO levels (-5.4 eV of PF8CZ and -5.7 eV of FLCZ-V) that can facilitate hole injecting so as to ameliorate the charge balance and, at the same time, achieve better electron-blocking capability that can effectively attenuate HTL decomposition. Meanwhile, the crosslinked blended HTL showed excellent solvent resistance and a high surface energy of 40.34 mN/m, which is favorable to enhance wettability for the deposition of a follow-up layer and attain better interfacial contact. Based on the blended HTL, blue QLEDs were fabricated by both spin-coating and inkjet printing. For the spin-coated blue QLED, a remarkable enhancement of external quantum efficiency (EQE) of 15.5% was achieved. Also, the EQE of the inkjet-printed blue QLED reached 9.2%, which is thus far the best result for the inkjet-printed blue QLED.

3.
J Orthop Surg Res ; 19(1): 540, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227938

RESUMEN

BACKGROUND: Radial head fractures are the most common bony injury of the elbow in adults. The current literature does not agree on whether isolated stable type II radial head fractures should be treated operatively or nonoperatively. This review aims to determine the preferred treatment for Mason type II radial head fractures and compare the outcomes of conservative and surgical treatment. METHODS: Our study used PRISMA guidelines and conducted a thorough search of multiple electronic databases, including PubMed, Cochrane, Embase, Web of Science, CNKI, and Wanfang databases, initially identifying 545 relevant publications on surgical and conservative treatment of Mason type II radial head fractures. The final search date for this study is July 7, 2024.Through a comprehensive meta-analysis, we evaluated several outcomes, including functional scores (DASH, OES, and MEPS scores), clinical outcomes (elbow flexion, elbow extension deficit, elbow pronation, and elbow supination), and complication rate (total complications and elbow pain). The mean difference (MD) was compared for continuous outcomes, and the odds ratios (ORs) were compared for categorical outcomes. RESULT: A total of 271 patients from 4 studies met the inclusion criteria. Among them, 142 patients received surgical treatment and 129 patients received non-surgical treatment. The study found no statistically significant differences between surgical and non-surgical treatments in DASH, OES, MEPS, elbow flexion, elbow extension impairment, and elbow pain. Compared with surgical treatment, non-surgical treatment was associated with greater elbow pronation (OR = -3.10, 95% CI = [-4.96, -1.25], P = 0.55, I2 = 0%) and a lower complication rate (OR = 5.54, 95% CI = [1.79, 17.14], P = 0.42, I2 = 0%). CONCLUSION: Based on the current evidence, conservative management of isolated Mason II radial head fractures yields favorable therapeutic outcomes with a low incidence of complications.


Asunto(s)
Tratamiento Conservador , Fracturas del Radio , Humanos , Fracturas del Radio/terapia , Fracturas del Radio/cirugía , Resultado del Tratamiento , Tratamiento Conservador/métodos , Articulación del Codo/cirugía , Masculino , Adulto , Rango del Movimiento Articular , Femenino , Lesiones de Codo , Fracturas Radiales de Cabeza y Cuello
4.
Front Cardiovasc Med ; 11: 1363230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228660

RESUMEN

Objectives: To evaluate the changes in distal vascular morphology and hemodynamics in patients with extremely severe aortic coarctation (CoA) after covered palliative (CP) stent dilation with different surgical strategies. Materials and methods: Perioperative computed tomography angiography and digital subtraction angiography were utilized to construct three aortic models with varying stenosis rates and one follow-up model in a patient with extremely severe CoA. The models included: an idealized non-stenosed model (A: 0%), a model post initial stent deployment (B: 28%), a model post balloon expansion (C: 39%), and a model 18 months after post-balloon expansion (D: 39%). Consistent boundary conditions were applied to all models, and hemodynamic simulation was conducted using the pure fluid method. Results: The narrowest and distal diameter of the stent increased by 34.71% and 59.29%, respectively, from model B to C. Additionally, the distal diameter of the stent increased by -13.80% and +43.68% compared to the descending aorta diameter, respectively. Furthermore, the ellipticity of the maximum cross-section of the aneurysm region in model A to D continued to increase. The oscillatory shear index at the stenosis to the region of the aneurysm were found to be higher in Models A and B, and lower in Models C and D. At the moment of maximum flow velocity, the blood flow distribution in models A and B was more uniform in the widest section of the blood vessels at the distal end of the stenosis, whereas models C and D exhibited disturbed blood flow with more than 2 eddy currents. The time-averaged wall shear stress (TAWSS) decreased in the distal and basal aneurysms, while it significantly increased at the step position. The aneurysmal region exhibited an endothelial cell activation potential value lower than 0.4 Pa-1. Conclusion: In patients with extremely severe CoA, it is crucial to ensure that the expanded diameter at both ends of the CP stent does not exceed the native vascular diameter during deployment. Our simulation results demonstrate that overdilation leads to a decrease in the TAWSS above the injured vessel, creating an abnormal hemodynamic environment that may contribute to the development and enlargement of false aneurysms in the early postoperative period. Clinical Trial Registration: ClinicalTrials.gov, (NCT02917980).

5.
Front Nutr ; 11: 1435364, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229587

RESUMEN

The intelligent senses (Electronic nose and tongue), were combined with headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) and free amino acid were used in combination to determine the aroma and taste components during the processing of Chinese traditional dish Steamed beef with rice flour (SBD). The findings revealed that E-nose and E-tongue, could clearly distinguish and identify the aroma and taste of SBD. A total of 66 volatile substances and 19 free amino acids were identified by HS-GC-IMS and amino acid analyzer, respectively. The highest contribution to aroma in the production of SBD was alcohols, esters and aldehydes. Further analysis of relative odor activity showed that 3-Methylbutanol-D, 3-Methylbutanol-M and 3-Methylthio propanal is the marinating stage (T2) main aroma components. Ethyl 3-methylbutanoate-M and Ethyl 3-methylbutanoate-D were the main aroma components in the seasoning stage (T3). Additionally, the calculation of the taste activity value showed that Glutamic contributed significantly to the umami of SBD. Alanine was a representative taste component in the marinating stage (T2), while Proline, Aspartic, Lysine, Glutamic, Valine, Arginine, and Histidine were characteristic amino acids of the seasoning stage (T3). Consequently, this study offers valuable insights into the industrial-scale production and flavor regulation of SBD products.

6.
Food Chem X ; 23: 101720, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39229611

RESUMEN

In this study, tea polyphenol oxidase (PPO) was purified via three-phase partitioning (TPP) using a deep eutectic solvent (DES) instead of t-butanol. First, the properties of 13 types of synthesized DESs were characterized, and DES-7 (thymol/dodecanoic acid) was selected as the best alternative solvent. The process parameters were optimized using response surface methodology. The experimental results revealed that when the (NH4)2SO4 concentration, DES to crude extract ratio, extraction time, and pH were 41%, 0.5:1, 75 min, and 5.6, respectively, the recovery and purification fold of tea PPO were 78.44% and 8.26, respectively. SDS-PAGE and native-PAGE were used to analyze the PPO before and after purification of the TTP system, and the molecular weight and purification effect of PPO were detected. Moreover, the DES could be recovered and recycled. The results indicate an environmentally friendly and stable DES, and provide a reference for the large-scale application of TPP to extract PPO.

7.
Urolithiasis ; 52(1): 124, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39230669

RESUMEN

The aim of this study was to construct the sixth in a series of guidelines on the treatment of urolithiasis by the International Alliance of Urolithiasis (IAU) that by providing a clinical framework for the management of pediatric patients with urolithiasis based on the best available published literature. All recommendations were summarized following a systematic review and assessment of literature in the PubMed database from January 1952 to December 2023. Each generated recommendation was graded using a modified GRADE methodology. Recommendations are agreed upon by Panel Members following review and discussion of the evidence. Guideline recommendations were developed that addressed the following topics: etiology, risk factors, clinical presentation and symptoms, diagnosis, conservative management, surgical interventions, prevention, and follow-up. Similarities in the treatment of primary stone episodes between children and adults, incorporating conservative management and advancements in technology for less invasive stone removal, are evident. Additionally, preventive strategies aiming to reduce recurrence rates, such as ensuring sufficient fluid intake, establishing well-planned dietary adjustments, and selective use pharmacologic therapies will also result in highly successful outcomes in pediatric stone patients. Depending on the severity of metabolic disorders and also anatomical abnormalities, a careful and close follow-up program should inevitably be planned in each pediatric patient to limit the risk of future recurrence rates.


Asunto(s)
Urolitiasis , Humanos , Urolitiasis/terapia , Urolitiasis/diagnóstico , Niño
8.
Mar Pollut Bull ; 207: 116875, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39236493

RESUMEN

Microbial degradation of polyethylene (PE) offers a promising solution to plastic pollution in the marine environment, but research in this field is limited. In this study, we isolated a novel marine strain of Pseudalkalibacillus sp. MQ-1 that can degrade PE. Scanning electron microscopy and water contact angle results showed that MQ-1 could adhere to PE films and render them hydrophilic. Analyses using X-ray diffraction, fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy showed a decrease in relative crystallinity, the appearance of new functional groups and an increase in the oxygen-to­carbon ratio of the PE films, making them more susceptible to degradation. The results of gel permeation chromatography and liquid chromatography-mass spectrometry indicated the depolymerization of the long PE chains, with the detection of an intermediate, decanediol. Furthermore, genome sequencing was employed to investigate the underlying mechanisms of PE degradation. The results of genome sequencing analysis identified the genes associated with PE degradation, including cytochrome P450, alcohol dehydrogenase, and aldehyde dehydrogenase involved in the oxidative reaction, monooxygenase related to ester bond formation, and esterase associated with ester bond cleavage. In addition, enzymes involved in fatty acid metabolism and intracellular transport have been identified, collectively providing insights into the metabolic pathway of PE degradation.

9.
Crit Rev Oncol Hematol ; : 104495, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236904

RESUMEN

Research on the mechanism and application of checkpoint inhibitory receptors in hematologic diseases has progressed rapidly. However, in the treatment of relapserefractory (R/R) hematologic malignancies and anti-programmed cell death protein 1 (PD-1), patients who are resistant to anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are in urgent need of alternative therapeutic targets. T cell immunoreceptor with immunoglobulin and ITIM domains (TIGIT) has a broad prospect as an inhibitory receptor like PD-1, but its more specific mechanism of action and application in hematologic diseases still need to be further studied. In this review, we discuss the mechanism of TIGIT pathway, combined effects with other immune checkpoints, immune-related therapy, the impact of TIGIT on hematopoietic stem cell transplantation (HSCT) and the tumor microenvironment (TME) provides a potential therapeutic target for hematologic malignancies.

10.
Chemosphere ; : 143259, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236923

RESUMEN

Citrate-modified biochar nanoparticles (CBCNPs) represent a promising amendment with plant-available silicon (PASi) releasing capacity. However, the co-transport behavior with released PASi remain poorly understood. This study investigated their co-transport in saturated porous media under various solution chemistry and low molecular weight organic acids (LMWOAs). Experimental and two-site kinetic model results revealed that higher ionic strength caused favorable aggregation and size-selective, hindering CBCNPs transport. Divalent Ca2+ ions retained CBCNPs more effectively than K+ due to stronger charge screening and cation bridging. The pH buffering capacity of CBCNPs resulted in consistent transport behavior across a broad pH range (4-8). XDLVO calculation clarified the impact mechanisms of IS, ion types and pH on CBCNPs transport. Furthermore, LMWOAs exhibited a time-dependent blocking effect on CBCNPs transport. Oxalic acid (OA) and citric acid (CA) facilitated CBCNPs transport though mechanisms beyond XDLVO, including steric hindrance, competitive adsorption, and surface hydrophilicity. The presence of LMWOAs significantly hindered PASi co-transport, with the inhibitory effect ranked as acetic acid (AA) ≈ CA > OA > absence of organic acids. The inhibition is attributed to the blocking effect and formation of Si-organic acid complexes, as evidenced by breakthrough curves and density functional theory calculations. This study provides novel insights into the co-transport of CBCNPs with released PASi through mutual mechanisms, indicating both potential environmental benefits and risks.

11.
Elife ; 122024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255192

RESUMEN

Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues of ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteostasis , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Humanos , Drosophila/metabolismo , Autofagia , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Neuronas/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética
12.
J Pharm Biomed Anal ; 252: 116461, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39255555

RESUMEN

Suxiao Jiuxin pill (SJP) was a commonly-used traditional Chinese medicine for treating cardiovascular diseases. It was composed of the rhizome of Ligusticum chuanxiong Hort. and Borneolum Syntheticum. The distribution of SJP in vivo was still ambiguous. A UPLC-MS/MS coupled with GC-MS method was developed to quantify twenty-one chemical ingredients in multiple tissues from rat after administration of SJP. Protein precipitation and liquid-liquid microextraction were both utilized in sample pretreatment. All analytes were detected under acceptable specificity, linearity (correlation coefficient > 0.992), sensitivity (LLOQ < 12.5 ng/mL), precision (RSD < 14.8 %), accuracy (RE < ±14.6 %), extraction recovery (between 52.8 % and 124.1 %), matrix effect (ranged from 60.5 % and 149.7 %) and stability (RE < ±16.0 %). The established method was successfully applied in the tissue distribution study of SJP in rats. As a result, the distribution characteristics of ten analytes were clearly elucidated, including borneol, isoborneol, ligustilide, senkyunolide A, ferulic acid, senkyunolide I, levistolide A, neocnidilide, senkyunolide H and angelicide. The information provided by this research was greatly meaningful for the active chemical ingredient exploration and clinical application of SJP.

13.
Colloids Surf B Biointerfaces ; 245: 114201, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39255748

RESUMEN

Changes in sodium alginate and calcium ion concentrations have a considerable impact on the structural properties of calcium alginate gel (ALG) beads, consequently influencing the biological characteristics of the cells encapsulated within them. This study aimed to examine the effects of calcium on the metastatic potential of hepatocellular carcinoma (HCC) cells encapsulated in ALG beads. The results showed that the invasion ability of HCC cells significantly increased when they were encapsulated in beads prepared with a calcium concentration of 200 mM compared to those prepared with a calcium concentration of 50 mM. Furthermore, the expression levels of genes related to metastasis were significantly elevated in ALG beads prepared with a calcium concentration of 200 mM. Specifically, the expression of activated matrix metalloproteinase 2 (MMP2), matrix metalloproteinase 9 (MMP9), and urokinase-type plasminogen activator system proteins was found to be high. Conversely, the expression of phosphatase and tensin homolog deleted on chromosome 10 was observed to be significantly reduced. These findings indicate that manipulating the calcium ion concentration during the fabrication of ALG beads enables the generation of three-dimensional HCC cells with varying metastatic capacities. This model offers a valuable tool for investigating the mechanisms underlying liver cancer metastasis and screening potential therapeutic drugs.

14.
Cell Rep Med ; : 101732, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39255796

RESUMEN

Lung parenchyma destruction represents a severe condition commonly found in chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality worldwide. Promoting lung regeneration is crucial for achieving clinical improvement. However, no therapeutic drugs are approved to improve the regeneration capacity due to incomplete understanding of the underlying pathogenic mechanisms. Here, we identify a positive feedback loop formed between adipose triglyceride lipase (ATGL)-mediated lipolysis and overexpression of CD36 specific to lung epithelial cells, contributing to disease progression. Genetic deletion of CD36 in lung epithelial cells and pharmacological inhibition of either ATGL or CD36 effectively reduce COPD pathogenesis and promote lung regeneration in mice. Mechanistically, disruption of the ATGL-CD36 loop rescues Z-DNA binding protein 1 (ZBP1)-induced cell necroptosis and restores WNT/ß-catenin signaling. Thus, we uncover a crosstalk between lipolysis and lung epithelial cells, suggesting the regenerative potential for therapeutic intervention by targeting the ATGL-CD36-ZBP1 axis in COPD.

15.
Biomed Mater ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255828

RESUMEN

Development of a low-cost and biocompatible hydrogel dressing with antimicrobial, antioxidant, and low swelling properties is important for accelerating wound healing. Here, a multifunctional alginate hydrogel dressing was fabricated using the D-(+)-gluconic acid δ-lactone/CaCO3 system. The addition of hyaluronic acid and tannic acid (TA) provides the alginate hydrogel with anti-reactive oxygen species (ROS), hemostatic, and pro-wound healing properties. Notably, soaking the alginate hydrogel in a poly-ε-lysine (EPL) aqueous solution enables the alginate hydrogel to be di-crosslinked with EPL through electrostatic interactions, forming a dense network resembling "armor" on the surface. This simple one-step soaking strategy provides the alginate hydrogel with antibacterial and anti-swelling properties. Swelling tests demonstrated that the cross-sectional area of the fully swollen multifunctional alginate hydrogel was only 1.3 times its initial size, thus preventing excessive wound expansion caused by excessive swelling. After 5 hours of in vitro release, only 7% of TA was cumulatively released, indicating a distinctly slow-release behavior. Furthermore, as evidenced by the removal of 2,2-diphenyl-1-picrylhydrazyl free radicals, this integrated alginate hydrogel systems demonstrate a notable capacity to eliminate ROS. Full-thickness skin wound repair experiment and histological analysis of the healing site in mice demonstrate that the developed multifunctional alginate hydrogels have a prominent effect on extracellular matrix formation and promotion of wound closure. Overall, this study introduces a cost-effective and convenient multifunctional hydrogel dressing with high potential for clinical application in treating open wounds.

16.
Nutr Metab (Lond) ; 21(1): 72, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256788

RESUMEN

BACKGROUND: The relationship between free fatty acids (FFAs) and the risk of mortality remains unclear. There is a scarcity of prospective studies examining the associations between specific FFAs, rather than total concentrations, of their effect on long-term health outcomes. OBJECTIVE: To evaluate the correlation between different FFAs and all-cause and cardiovascular mortality in a large, diverse, nationally representative sample of adults in the US, and examine how different FFAs may mediate this association. METHODS: This cohort study included unsaturated fatty acids (USFA) and saturated fatty acids (SFA) groups in the US National Health and Nutrition Examination Survey (NHANES) from 2011 to 2014 and provided blood samples for FFAs levels. Multiple model calibration was performed using Cox regression analysis for known risk factors to explore the associations between FFAs and all-cause and cardiovascular mortality. RESULTS: In the group of USFA, 3719 people were included, median follow-up, 6.7 years (5.8-7.8 years). In the SFA group, we included 3900 people with a median follow-up, 6.9 years (5.9-8 years). In the USFA group, myristoleic acid (14:1 n-5) (hazard ratio (HR) 1.02 [1.006-1.034]; P = 0.004), palmitoleic acid (16:1 n-7) (HR 1.001 [1.001-1.002]; P < 0.001), cis-vaccenic acid (18:1 n-7) (HR 1.006 [1.003-1.009]; P < 0.001), nervonic acid (24:1 n-9) (HR 1.007 [1.002-1.012]; P = 0.003), eicosatrienoic acid (20:3 n-9) (HR 1.027 [1.009-1.046]; P = 0.003), docosatetraenoic acid (22:4 n-6) (HR 1.024 [1.012-1.036]; P < 0.001), and docosapentaenoic acid (22:5 n-6) (HR 1.019 [1.006-1.032]; P = 0.005) were positively associated with the all-cause mortality, while docosahexaenoic acid (22:6 n-3) had a statistically lower risk of all-cause mortality (HR 0.998 [0.996-0.999]; P = 0.007). Among the SFA group, palmitic acid (16:0) demonstrated a higher risk of all-cause mortality (HR 1.00 [1.00-1.00]; P = 0.022), while tricosanoic acid (23:0) (HR 0.975 [0.959-0.991]; P = 0.002) and lignoceric acid (24:0) (HR 0.992 [0.984-0.999]; P = 0.036) were linked to a lower risk of all-cause mortality. Besides 23:0 and 24:0, the other FFAs mentioned above were linearly associated with the risks of all-cause mortality. CONCLUSIONS: In this nationally representative cohort of US adults, some different FFAs exhibited significant associations with risk of all-cause mortality. Achieving optimal concentrations of specific FFAs may lower this risk of all-cause mortality, but this benefit was not observed in regards to cardiovascular mortality.

17.
Nanoscale ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257237

RESUMEN

Lithium (Li) metal anodes are considered one of the most promising anodes for high-performance batteries with ultra-high specific energy density. However, uncontrolled dendrite growth and the unsuitability of common systems for high voltage hinder the development of Li metal batteries with long cycle life. Herein, we report a rationally designed artificial solid electrolyte interphase (SEI) for Li metal anodes, incorporating LiNO3 and lithium difluoro(oxalato)borate (LiDFOB) as additives within a porous poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) polymer skeleton (referred to as PNF). LiNO3 and LiDFOB can release and synergistically react at the electrode surface, leading to the in situ generation of a homogeneously distributed inorganic/organic SEI during the electrochemical process. This SEI improves homogeneity, ionic conductivity and mechanical stability, contributing to the suppression of electrolyte side reactions and Li dendrite growth. Moreover, a uniform CEI with high Li+ conductivity can be constructed on the NCM811 particles, further enhancing the structural integrity of the NCM811 cathode. As a result, the artificial SEI layer on Li metal anodes enables stable cycling of Li-Cu half cells in an ester-based electrolyte and Li-LiNi0.8Mn0.1Co0.1O2 full cell even at a high voltage of 4.5 V. This work provides new insights into designing homogeneous SEIs for Li metal batteries.

18.
J Colloid Interface Sci ; 678(Pt B): 88-94, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39241450

RESUMEN

Considerable attention has been paid to the preparation of single-atom solid base catalysts (SASBCs) owing to their high activity and maximized utilization of basic sites. At present, the reported fabrication methods of SASBCs, such as two-step reduction strategy and sublimation capture strategy, require high temperature. Such a high activation temperature is easy to cause the sublimation loss of alkali or alkaline earth metal atoms and destructive to the support structure. Herein, a new SASBC, Ca1/UiO-67-BPY, is fabricated, in which the alkaline earth metal Ca sites are immobilized onto N-rich metal-organic framework UiO-67-BPY at room temperature. The results show that the atomic configuration of Ca single atoms is coordinated by two N atoms in the framework. The obtained Ca SASBC possesses ordered structure and exhibits high product yield of 87.2% in the Knoevenagel reaction between benzaldehyde and malononitrile. Furthermore, thanks to the Ca single atoms sites anchored on UiO-67-BPY, the Ca1/UiO-67-BPY catalyst also shows good stability during cycles. This work might offer new insight in designing SASBCs for different base-catalyzed reactions.

19.
Neoplasia ; 57: 101050, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243502

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis. A better understanding of mechanisms concerned in glioma invasion might be critical for treatment optimization. Given that epithelial-mesenchymal transition in tumor cells is closely associated with glioma progression and recurrence, identifying pivotal mediators in GBM EMT process is urgently needed. As a member of Fatty acid binding protein (FABP) family, FABP4 serves as chaperones for free fatty acids and participates in cellular process including fatty acid uptake, transport, and metabolism. In this study, our data revealed that FABP4 expression was elevated in human GBM samples and correlated with a mesenchymal glioma subtype. Gain of function and loss of function experiments indicated that FABP4 potently rendered glioma cells increased filopodia formation and cell invasiveness. Differential expression genes analysis and GSEA in TCGA dataset revealed an EMT-related molecular signature in FABP4-mediated signaling pathways. Cell interaction analysis suggested CD36 as a potential target regulated by FABP4. Furthermore, in vitro mechanistic experiments demonstrated that FABP4-induced CD36 expression promoted EMT via non-canonical TGFß pathways. An intracranial glioma model was constructed to assess the effect of FABP4 on tumor progression in vivo. Together, our findings demonstrated a critical role for FABP4 in the regulation invasion and EMT in GBM, and suggest that pharmacological inhibition of FABP4 may represent a promising therapeutic strategy for treatment of GBM.

20.
J Environ Manage ; 370: 122362, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243643

RESUMEN

Human activities that involve diverse behaviors and feature a variety of participations and collaborations usually lead to varying and dynamic impacts on the ecological environment. Quantitative analysis of the dynamic changes and complex relationships between human activities and the ecological environment (eco-environment) can provide crucial insights for ecological protecting and balance maintaining. We proposed a two-dimensional four-quadrant assessment method based on the dynamic changes in Human Activity Index (HAI) - Environmental Ecological Condition Index (EECI) to analyze the dynamic trends and coupling coordination degree (CCD) between HAI and EECI. This approach was applied in an empirical study of Hainan Province. A comprehensive HAI at a resolution of 1 km × 1 km is established to measure human activities, while an EECI is developed to evaluate ecological environment quality. The eco-environment showed continuous improvement, with the HAI initially rising and then declining. Analysis of coupling coordination revealed a ratio of 6:1 between coordinated development regions and conflict regions, indicating a gradual improvement in overall coupling coordination. The interaction between the HAI and EECI is strengthening, though variations exist across different locations. Using the geodetector method, we identified Net Primary Productivity (NPP), Land use and land cover (LULC), and Particulate Matter (PM) as the primary factors influencing changes in coupling coordination between HAI and EECI. These factors indirectly affect the stability and carrying capacity of the ecological environment. This method facilitates a quantitative examination of the dynamic relationship between HAI and EECI in different regions, offering insights into ecosystem functionality, biodiversity maintenance, and the effect of HAI on the region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA