Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.584
Filtrar
1.
Sci Rep ; 14(1): 15152, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956404

RESUMEN

Removing texture while preserving the main structure of an image is a challenging task. To address this, this paper propose an image smoothing method based on global gradient sparsity and local relative gradient constraints optimization. To reduce the interference of complex texture details, adopting a multi-directional difference constrained global gradient sparsity decomposition method, which provides a guidance image with weaker texture detail gradients. Meanwhile, using the luminance channel as a reference, edge-aware operator is constructed based on local gradient constraints. This operator weakens the gradients of repetitive and similar texture details, enabling it to obtain more accurate structural information for guiding global optimization of the image. By projecting multi-directional differences onto the horizontal and vertical directions, a mapping from multi-directional differences to bi-directional gradients is achieved. Additionally, to ensure the consistency of measurement results, a multi-directional gradient normalization method is designed. Through experiments, we demonstrate that our method exhibits significant advantages in preserving image edges compared to current advanced smoothing methods.

2.
World J Clin Cases ; 12(18): 3385-3394, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38983398

RESUMEN

BACKGROUND: Endometrial cancer (EC) is a common gynecological malignancy that typically requires prompt surgical intervention; however, the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes. Previous studies have highlighted the prognostic potential of circulating tumor DNA (ctDNA) monitoring for minimal residual disease in patients with EC. AIM: To develop and validate an optimized ctDNA-based model for predicting short-term postoperative EC recurrence. METHODS: We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model, which was validated on 143 EC patients operated between 2020 and 2021. Prognostic factors were identified using univariate Cox, Lasso, and multivariate Cox regressions. A nomogram was created to predict the 1, 1.5, and 2-year recurrence-free survival (RFS). Model performance was assessed via receiver operating characteristic (ROC), calibration, and decision curve analyses (DCA), leading to a recurrence risk stratification system. RESULTS: Based on the regression analysis and the nomogram created, patients with postoperative ctDNA-negativity, postoperative carcinoembryonic antigen 125 (CA125) levels of < 19 U/mL, and grade G1 tumors had improved RFS after surgery. The nomogram's efficacy for recurrence prediction was confirmed through ROC analysis, calibration curves, and DCA methods, highlighting its high accuracy and clinical utility. Furthermore, using the nomogram, the patients were successfully classified into three risk subgroups. CONCLUSION: The nomogram accurately predicted RFS after EC surgery at 1, 1.5, and 2 years. This model will help clinicians personalize treatments, stratify risks, and enhance clinical outcomes for patients with EC.

3.
J Nanobiotechnology ; 22(1): 403, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982427

RESUMEN

BACKGROUND: Following spinal cord injury (SCI), the inflammatory storm initiated by microglia/macrophages poses a significant impediment to the recovery process. Exosomes play a crucial role in the transport of miRNAs, facilitating essential cellular communication through the transfer of genetic material. However, the miRNAs from iPSC-NSCs-Exos and their potential mechanisms leading to repair after SCI remain unclear. This study aims to explore the role of iPSC-NSCs-Exos in microglia/macrophage pyroptosis and reveal their potential mechanisms. METHODS: iPSC-NSCs-Exos were characterized and identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot. A mouse SCI model and a series of in vivo and in vitro experiments were conducted to investigate the therapeutic effects of iPSC-NSCs-Exos. Subsequently, miRNA microarray analysis and rescue experiments were performed to confirm the role of miRNAs in iPSC-NSCs-Exos in SCI. Mechanistic studies were carried out using Western blot, luciferase activity assays, and RNA-ChIP. RESULTS: Our findings revealed that iPSC-NSCs-derived exosomes inhibited microglia/macrophage pyroptosis at 7 days post-SCI, maintaining myelin integrity and promoting axonal growth, ultimately improving mice motor function. The miRNA microarray showed let-7b-5p to be highly enriched in iPSC-NSCs-Exos, and LRIG3 was identified as the target gene of let-7b-5p. Through a series of rescue experiments, we uncovered the connection between iPSC-NSCs and microglia/macrophages, revealing a novel target for treating SCI. CONCLUSION: In conclusion, we discovered that iPSC-NSCs-derived exosomes can package and deliver let-7b-5p, regulating the expression of LRIG3 to ameliorate microglia/macrophage pyroptosis and enhance motor function in mice after SCI. This highlights the potential of combined therapy with iPSC-NSCs-Exos and let-7b-5p in promoting functional recovery and limiting inflammation following SCI.


Asunto(s)
Exosomas , Células Madre Pluripotentes Inducidas , Macrófagos , MicroARNs , Microglía , Piroptosis , Traumatismos de la Médula Espinal , Animales , Exosomas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Microglía/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Femenino , Masculino
4.
World J Clin Oncol ; 15(6): 667-673, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38946830

RESUMEN

Colorectal cancer (CRC) is the third most common cancer worldwide and the second most common cause of cancer death. Nanotherapies are able to selectively target the delivery of cancer therapeutics, thus improving overall antitumor efficiency and reducing conventional chemotherapy side effects. Mesoporous silica nanoparticles (MSNs) have attracted the attention of many researchers due to their remarkable advantages and biosafety. We offer insights into the recent advances of MSNs in CRC treatment and their potential clinical application value.

5.
NPJ Breast Cancer ; 10(1): 54, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951507

RESUMEN

Intrinsic breast cancer molecular subtyping (IBCMS) provides significant prognostic information for patients with breast cancer and helps determine treatment. This study compared IBCMS methods on various gene-expression platforms in PALOMA-2 and PALLET trials. PALOMA-2 tumor samples were profiled using EdgeSeq and nanostring and subtyped with AIMS, PAM50, and research-use-only (ruo)Prosigna. PALLET tumor biopsies were profiled using mRNA sequencing and subtyped with AIMS and PAM50. In PALOMA-2 (n = 222), a 54% agreement was observed between results from AIMS and gold-standard ruoProsigna, with AIMS assigning 67% basal-like to HER2-enriched. In PALLET (n = 224), a 69% agreement was observed between results from PAM50 and AIMS. Different IBCMS methods may lead to different results and could misguide treatment selection; hence, a standardized clinical PAM50 assay and computational approach should be used.Trial number: NCT01740427.

6.
Sci Rep ; 14(1): 15137, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956226

RESUMEN

In this study, a shaking table test was conducted on long-short composite anti-slide piles, the development process and dynamic response of cracks in a pile-supported slope were observed, and the failure mechanism of the slope was explored. The experiment showed that the failure of the pile-supported slope under an earthquake was a gradual process; cracks first occur at the top of the slope, where the support action of the piles was weak. As the input seismic action increased, cracks developed downwards along the slope. Owing to the support effect of the long-short anti-slide composite piles, the transmission path of the cracks changed, and the cracks developed along the top of the composite piles, ultimately leading to overtop failure. When cracks appeared on the slope or near final failure, the acceleration response law of the supported slope undergone a sudden change, which was an important indicator of slope instability. The distribution of dynamic soil stress on the pile body was greatly affected by the input peak ground acceleration, and the maximum bending moment of the long-short composite anti-slide piles was located near the weak interlayer.

7.
Int Immunopharmacol ; 139: 112666, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39002521

RESUMEN

Immunotherapy has limited response rates in colorectal cancer (CRC) due to an immunosuppressive tumor microenvironment (TME). Combining transcriptome sequencing, clinical specimens, and functional experiments, we identified a unique group of CAF subpopulations (COX4I2 + ) with inhibited mitochondrial respiration and enhanced glycolysis. Through bioinformatics predictions and luciferase reporter assays, we determined that EBF1 can upstreamly regulate COX4I2 transcription. COX4I2 + CAFs functionally and phenotypically resemble myofibroblasts, are important for the formation of the fibrotic TME, and are capable of activating the M2 phenotype of macrophages. In vitro experiments demonstrated that COX4I2 + CAFs promote immunosuppressive TME by blocking CD8 + T cell infiltration and inducing CD8 + T cell dysfunction. Using multiple independent cohorts, we also found a strong correlation between the immunotherapy response rate of CRC patients and COX4I2 expression in their tumors. Our results identify a CAF subpopulation characterized by activation of the EBF1-COX4I2 axis, and this group of CAFs can be targeted to improve cancer immunotherapy outcomes.

8.
Cell Death Differ ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987382

RESUMEN

Cuproptosis is characterized by the aggregation of lipoylated enzymes of the tricarboxylic acid cycle and subsequent loss of iron-sulfur cluster proteins as a unique copper-dependent form of regulated cell death. As dysregulation of copper homeostasis can induce cuproptosis, there is emerging interest in exploiting cuproptosis for cancer therapy. However, the molecular drivers of cancer cell evasion of cuproptosis were previously undefined. Here, we found that cuproptosis activates the Wnt/ß-catenin pathway. Mechanistically, copper binds PDK1 and promotes its interaction with AKT, resulting in activation of the Wnt/ß-catenin pathway and cancer stem cell (CSC) properties. Notably, aberrant activation of Wnt/ß-catenin signaling conferred resistance of CSCs to cuproptosis. Further studies showed the ß-catenin/TCF4 transcriptional complex directly binds the ATP7B promoter, inducing its expression. ATP7B effluxes copper ions, reducing intracellular copper and inhibiting cuproptosis. Knockdown of TCF4 or pharmacological Wnt/ß-catenin blockade increased the sensitivity of CSCs to elesclomol-Cu-induced cuproptosis. These findings reveal a link between copper homeostasis regulated by the Wnt/ß-catenin pathway and cuproptosis sensitivity, and suggest a precision medicine strategy for cancer treatment through selective cuproptosis induction.

9.
Eur Radiol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987399

RESUMEN

OBJECTIVE: To investigate the value of radiomics analysis of dual-layer spectral-detector computed tomography (DLSCT)-derived iodine maps for predicting tumor deposits (TDs) preoperatively in patients with colorectal cancer (CRC). MATERIALS AND METHODS: A total of 264 pathologically confirmed CRC patients (TDs + (n = 80); TDs - (n = 184)) who underwent preoperative DLSCT from two hospitals were retrospectively enrolled, and divided into training (n = 124), testing (n = 54), and external validation cohort (n = 86). Conventional CT features and iodine concentration (IC) were analyzed and measured. Radiomics features were derived from venous phase iodine maps from DLSCT. The least absolute shrinkage and selection operator (LASSO) was performed for feature selection. Finally, a support vector machine (SVM) algorithm was employed to develop clinical, radiomics, and combined models based on the most valuable clinical parameters and radiomics features. Area under receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis were used to evaluate the model's efficacy. RESULTS: The combined model incorporating the valuable clinical parameters and radiomics features demonstrated excellent performance in predicting TDs in CRC (AUCs of 0.926, 0.881, and 0.887 in the training, testing, and external validation cohorts, respectively), which outperformed the clinical model in the training cohort and external validation cohorts (AUC: 0.839 and 0.695; p: 0.003 and 0.014) and the radiomics model in two cohorts (AUC: 0.922 and 0.792; p: 0.014 and 0.035). CONCLUSION: Radiomics analysis of DLSCT-derived iodine maps showed excellent predictive efficiency for preoperatively diagnosing TDs in CRC, and could guide clinicians in making individualized treatment strategies. CLINICAL RELEVANCE STATEMENT: The radiomics model based on DLSCT iodine maps has the potential to aid in the accurate preoperative prediction of TDs in CRC patients, offering valuable guidance for clinical decision-making. KEY POINTS: Accurately predicting TDs in CRC patients preoperatively based on conventional CT features poses a challenge. The Radiomics model based on DLSCT iodine maps outperformed conventional CT in predicting TDs. The model combing DLSCT iodine maps radiomics features and conventional CT features performed excellently in predicting TDs.

10.
J Transl Med ; 22(1): 644, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982507

RESUMEN

BACKGROUND: Genetic disorders often manifest as abnormal fetal or childhood development. Copy number variations (CNVs) represent a significant genetic mechanism underlying such disorders. Despite their importance, the effectiveness of clinical exome sequencing (CES) in detecting CNVs, particularly small ones, remains incompletely understood. We aimed to evaluate the detection of both large and small CNVs using CES in a substantial clinical cohort, including parent-offspring trios and proband only analysis. METHODS: We conducted a retrospective analysis of CES data from 2428 families, collected from 2018 to 2021. Detected CNV were categorized as large or small, and various validation techniques including chromosome microarray (CMA), Multiplex ligation-dependent probe amplification assay (MLPA), and/or PCR-based methods, were employed for cross-validation. RESULTS: Our CNV discovery pipeline identified 171 CNV events in 154 cases, resulting in an overall detection rate of 6.3%. Validation was performed on 113 CNVs from 103 cases to assess CES reliability. The overall concordance rate between CES and other validation methods was 88.49% (100/113). Specifically, CES demonstrated complete consistency in detecting large CNV. However, for small CNVs, consistency rates were 81.08% (30/37) for deletions and 73.91% (17/23) for duplications. CONCLUSION: CES demonstrated high sensitivity and reliability in CNV detection. It emerges as an economical and dependable option for the clinical CNV detection in cases of developmental abnormalities, especially fetal structural abnormalities.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Enfermedades Genéticas Congénitas , Humanos , Variaciones en el Número de Copia de ADN/genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética , Reproducibilidad de los Resultados , Femenino , Valor Predictivo de las Pruebas , Masculino , Estudios Retrospectivos
11.
Animals (Basel) ; 14(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38998106

RESUMEN

Janus kinase 2 (JAK2) plays a critical role in myoblast proliferation and fat deposition in animals. Our previous RNA-Seq analyses identified a close association between the JAK2 gene and muscle development. To date, research delving into the relationship between the JAK2 gene and growth traits has been sparse. In this study, we sought to investigate the relationship between novel mutations within the JAK2 gene and goat growth traits. Herein, two novel InDel (Insertion/Deletion) polymorphisms within the JAK2 gene were detected in 548 goats, and only two genotypes were designated as ID (Insertion/Deletion) and DD (Deletion/Deletion). The results indicate that the two InDels, the del19008 locus in intron 2 and del72416 InDel in intron 6, showed significant associations with growth traits (p < 0.05). Compared to Nubian and Jianzhou Daer goats, the del72416 locus displayed a more pronounced effect in the Fuqing breed group. In the Nubian breed (NB) group, both InDels showed a marked influence on body height (BH). There were strong linkages observed for these two InDels between the Fuqing (FQ) and Jianzhou (JZ) populations. The DD-ID diplotype was associated with inferior growth traits in chest width (ChW) and cannon circumference (CaC) in the FQ goats compared to the other diplotypes. In the NB population, the DD-DD diplotype exhibited a marked negative impact on BH and HuWI (hucklebone width index), in contrast to the other diplotypes. In summary, our findings suggest that the two InDel polymorphisms within the JAK2 gene could serve as valuable molecular markers for enhancing goat growth traits in breeding programs.

12.
Cell Rep ; 43(7): 114424, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38959111

RESUMEN

Metabolic reprogramming dictates tumor molecular attributes and therapeutic potentials. However, the comprehensive metabolic characteristics in gastric cancer (GC) remain obscure. Here, metabolic signature-based clustering analysis identifies three subtypes with distinct molecular and clinical features: MSC1 showed better prognosis and upregulation of the tricarboxylic acid (TCA) cycle and lipid metabolism, combined with frequent TP53 and RHOA mutation; MSC2 had moderate prognosis and elevated nucleotide and amino acid metabolism, enriched by intestinal histology and mismatch repair deficient (dMMR); and MSC3 exhibited poor prognosis and enhanced glycan and energy metabolism, accompanied by diffuse histology and frequent CDH1 mutation. The Shandong Provincial Hospital (SDPH) in-house dataset with matched transcriptomic, metabolomic, and spatial-metabolomic analysis also validated these findings. Further, we constructed the metabolic subtype-related prognosis gene (MSPG) scoring model to quantify the activity of individual tumors and found a positive correlation with cuproptosis signaling. In conclusion, comprehensive recognition of the metabolite signature can enhance the understanding of diversity and heterogeneity in GC.

13.
Biochem Biophys Res Commun ; 727: 150317, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38959733

RESUMEN

Abnormalities in osteoclastic generation or activity disrupt bone homeostasis and are highly involved in many pathologic bone-related diseases, including rheumatoid arthritis, osteopetrosis, and osteoporosis. Control of osteoclast-mediated bone resorption is crucial for treating these bone diseases. However, the mechanisms of control of osteoclastogenesis are incompletely understood. In this study, we identified that inosine 5'-monophosphate dehydrogenase type II (Impdh2) positively regulates bone resorption. By histomorphometric analysis, Impdh2 deletion in mouse myeloid lineage cells (Impdh2LysM-/- mice) showed a high bone mass due to the reduced osteoclast number. qPCR and western blotting results demonstrated that the expression of osteoclast marker genes, including Nfatc1, Ctsk, Calcr, Acp5, Dcstamp, and Atp6v0d2, was significantly decreased in the Impdh2LysM-/- mice. Furthermore, the Impdh inhibitor MPA treatment inhibited osteoclast differentiation and induced Impdh2-cytoophidia formation. The ability of osteoclast differentiation was recovered after MPA deprivation. Interestingly, genome-wide analysis revealed that the osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation, were impaired in the Impdh2LysM-/- mice. Moreover, the deletion of Impdh2 alleviated ovariectomy-induced bone loss. In conclusion, our findings revealed a previously unrecognized function of Impdh2, suggesting that Impdh2-mediated mechanisms represent therapeutic targets for osteolytic diseases.

14.
Anal Methods ; 16(28): 4683-4690, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38958106

RESUMEN

Esophageal cancer is a common cancer with high morbidity and mortality that severely threatens the safety and quality of human life. The strong metastatic nature of esophageal cancer enables it to metastasize more quickly and covertly, making it difficult for current diagnostic and treatment methods to achieve efficient early screening, as well as timely and effective treatment. As a promising solution, nucleic acid aptamers, a kind of special single-stranded DNA or RNA oligonucleotide selected by the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology, can specifically bind with different molecular targets. In this paper, random DNA single-stranded oligonucleotides were used as the initial library. Using TE-1 cells and HEEC cells as targets, specific binding sequences were selected by 15 rounds of the cell-SELEX method, and the aptamer sequence that binds to TE-1 cells with the most specificity was obtained and named Te4. The Te4 aptamer was further validated for binding specificity, binding affinity, type of target, in vitro cytotoxicity when conjugated with DOX(Te4-DOX), and in vivo distribution. Results of in vitro validation showed that Te4 has outstanding binding specificity with a Kd value of 51.16 ± 5.52 nM, and the target type of Te4 was preliminarily identified as a membrane protein. Furthermore, the cytotoxicity experiment showed that Te4-DOX has specific cytotoxicity towards cultured TE-1 cells. Finally, the results of the in vivo distribution experiment showed that the Te4 aptamer is able to specifically target tumor regions in nude mice, showing great potential to be applied in future diagnosis and targeted therapy of esophageal cancer.


Asunto(s)
Aptámeros de Nucleótidos , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Técnica SELEX de Producción de Aptámeros , Aptámeros de Nucleótidos/farmacología , Aptámeros de Nucleótidos/química , Humanos , Técnica SELEX de Producción de Aptámeros/métodos , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Animales , Línea Celular Tumoral , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C
15.
Nano Lett ; 24(27): 8277-8286, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38949123

RESUMEN

The controlled vapor-phase synthesis of two-dimensional (2D) transition metal dichalcogenides (TMDs) is essential for functional applications. While chemical vapor deposition (CVD) techniques have been successful for transition metal sulfides, extending these methods to selenides and tellurides often faces challenges due to uncertain roles of hydrogen (H2) in their synthesis. Using CVD growth of MoSe2 as an example, this study illustrates the role of a H2-free environment during temperature ramping in suppressing the reduction of MoO3, which promotes effective vaporization and selenization of the Mo precursor to form MoSe2 monolayers with excellent crystal quality. As-synthesized MoSe2 monolayer-based field-effect transistors show excellent carrier mobility of up to 20.9 cm2/(V·s) with an on-off ratio of 7 × 107. This approach can be extended to other TMDs, such as WSe2, MoTe2, and MoSe2/WSe2 in-plane heterostructures. Our work provides a rational and facile approach to reproducibly synthesize high-quality TMD monolayers, facilitating their translation from laboratory to manufacturing.

16.
J Colloid Interface Sci ; 675: 451-460, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38981254

RESUMEN

HYPOTHESIS: Ice friction plays a crucial role in both basic study and practical use. Various strategies for controlling ice friction have been developed. However, one unsolved puzzle regarding ice friction is the effect of ion-ice interplay on its tribological properties. EXPERIMENTS AND SIMULATIONS: Here, we conducted ice friction experiments and summarized the specific effects of hydrated ions on ice friction. By selecting cations and anions, the coefficient of ice friction can be reduced by more than 70 percent. Experimental spectra, low-field nuclear magnetic resonance (LF-NMR), density functional theory (DFT) calculations, and Molecular dynamics (MD) simulations demonstrated that the addition of ions could break the H-bonds in water. FINDINGS: The link between the charge density of ions and the coefficients of ice friction was revealed. A part of the ice structure was changed from an ice-like to a liquid-like interfacial water structure with the addition of ions. Lower charge density ions led to weaker ionic forces with the water molecules in the immobilized water layer, resulting in free water molecules increasing in the lubricating layer. This study provides guidance for preparing ice-making solutions with low friction coefficients and a fuller understanding of the interfacial water structure at low temperatures.

17.
J Pineal Res ; 76(5): e12989, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38978438

RESUMEN

Colistin is renowned as a last-resort antibiotic due to the emergence of multidrug-resistant pathogens. However, its potential toxicity significantly hampers its clinical utilization. Melatonin, chemically known as N-acetyl-5-hydroxytryptamine, is an endogenous hormone produced by the pineal gland and possesses diverse biological functions. However, the protective role of melatonin in alleviating antibiotic-induced intestinal inflammation remains unknown. Herein, we reveal that colistin stimulation markedly elevates intestinal inflammatory levels and compromises the gut barrier. In contrast, pretreatment with melatonin safeguards mice against intestinal inflammation and mucosal damage. Microbial diversity analysis indicates that melatonin supplementation prevents a reduction in the abundance of Erysipelotrichales and Bifidobacteriales, as well as an increase in Desulfovibrionales abundance, following colistin exposure. Remarkably, short-chain fatty acids (SCFAs) analysis shows that propanoic acid contributes to the protective effect of melatonin on colistin-induced intestinal inflammation. Furthermore, the protection effects of melatonin and propanoic acid on LPS-induced cellular inflammation in RAW 264.7 cells are confirmed. Mechanistic investigations suggest that intervention with melatonin and propanoic acid can repress the activation of the TLR4 signal and its downstream NF-κB and MAPK signaling pathways, thereby mitigating the toxic effects of colistin. Our work highlights the unappreciated role of melatonin in preventing the potential detrimental effects of colistin on intestinal health and suggests a combined therapeutic strategy to effectively manage intestinal infectious diseases.


Asunto(s)
Colistina , Disbiosis , Microbioma Gastrointestinal , Melatonina , Melatonina/farmacología , Animales , Ratones , Colistina/efectos adversos , Disbiosis/inducido químicamente , Disbiosis/metabolismo , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Células RAW 264.7 , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Masculino , Antibacterianos/farmacología , Ratones Endogámicos C57BL
18.
Discov Oncol ; 15(1): 266, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967893

RESUMEN

Glioma is the most common malignant tumor in the central nervous system, and its unique pathogenesis often leads to poor treatment outcomes and prognosis. In 2021, the World Health Organization (WHO) divided gliomas into five categories based on their histological characteristics and molecular changes. Non-coding RNA is a type of RNA that does not encode proteins but can exert biological functions at the RNA level, and long non-coding RNA (lncRNA) is a type of non-coding RNA with a length exceeding 200 nt. It is controlled by various transcription factors and plays an indispensable role in the regulatory processes in various cells. Numerous studies have confirmed that the dysregulation of lncRNA is critical in the pathogenesis, progression, and malignancy of gliomas. Therefore, this article reviews the proliferation, apoptosis, invasion, migration, angiogenesis, immune regulation, glycolysis, stemness, and drug resistance changes caused by the dysregulation of lncRNA in gliomas, and summarizes their potential clinical significance in gliomas.

19.
Nature ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977018

RESUMEN

Two-dimensional (2D)/three-dimensional (3D) perovskite heterostructures have played a key role in advancing the performance of perovskite solar cells (PSCs)1,2. However, the migration of cations between 2D and 3D layers results in the disruption of octahedral networks that leads to degradation in performance over time3,4. We hypothesized that perovskitoids, with robust organic-inorganic networks enabled by edge- and face-sharing, could impede ion migration. We explored a set of perovskitoids of varying dimensionality, and found that cation migration within perovskitoid/perovskite heterostructures was suppressed compared to the 2D/3D perovskite case. Increasing the dimensionality of perovskitoids improves charge transport when they are interfaced with 3D perovskite surfaces - this the result of enhanced octahedral connectivity and out-of-plane orientation. The 2D perovskitoid (A6BfP)8Pb7I22 (A6BfP: N-aminohexyl-benz[f]-phthalimide) provides efficient passivation of perovskite surfaces and enables uniform large-area perovskite films. Devices based on perovskitoid/perovskite heterostructures achieve a certified quasi-steady-state power conversion efficiency of 24.6% for centimeter-area PSCs. We removed the fragile hole transport layers and showed stable operation of the underlying perovskitoid/perovskite heterostructure at 85°C for 1,250 hours for encapsulated large-area devices in an air ambient.

20.
Int J Clin Oncol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977538

RESUMEN

PURPOSE: To measure the micro-foci distance away from gross tumor and to provide reference to create the clinical target volume (CTV) margin for boost radiotherapy in rectal adenocarcinoma. METHODS: Twenty-eight rectal cancer surgical specimens of only total mesorectal excision were collected. The pathological specimens were retrospectively measured, and the nearest distance between the tumor micro-foci and gross tumor was microscopically measured. The "in vivo-in vitro" retraction factor was calculated as the ratio of the deepest thickness laterally and the vertical height superior/inferiorly of the rectal tumor measured in MRI and those measured in immediate pathological specimens. The retraction factor during pathological specimen processing was calculated as the distance ratio before and after dehydration in the lateral, superior, and inferior sides by the "knot marking method." The distances of tumor micro-foci were individually corrected with these two retraction factors. RESULTS: The mean "in vivo-in vitro" tumor retraction factors were 0.913 peripherally and 0.920 superior/inferiorly. The mean tumor specimen processing retraction factors were 0.804 peripherally, 0.815 inferiorly, and 0.789 superiorly. Of 28 patients, 14 cases (50.0%) had 24 lateral micro-foci, 8 cases (28.6%) had 13 inferior micro-foci, and 7 cases (25.0%) had 19 superior micro-foci. The 95th percentiles of the micro-foci distance for 28 patients were 6.44 mm (peripheral), 5.54 mm (inferior), and 5.42 mm (superior) after retraction correction. CONCLUSION: The micro-foci distances of 95% of rectal adenocarcinoma patients examined were within 6.44 mm peripherally, 5.54 mm inferiorly, and 5.42 mm superiorly. These findings provide reference to set the boost radiotherapy CTV margin for rectal cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...