Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38890842

RESUMEN

A single-nucleotide polymorphism (SNP) is a genome-level trait that arises from a variation in a single nucleotide, leading to diversity in DNA sequences. SNP screening is commonly used to provide candidate genes for yak breeding efforts. Integrin Subunit Alpha 9 (ITGA9) is an integrin protein. It plays an important role in cell adhesion, signalling, and other processes. The aim of this study was to discuss the association between genetic polymorphisms in the ITGA9 gene and milk quality traits and to identify potential molecular marker loci for yak breeding quality. We genotyped 162 yaks using an Illumina Yak cGPS 7K liquid chip and identified the presence of polymorphisms at nine SNP loci in the ITGA9 gene of yaks. The results showed that the mutant genotypes in the loci g.285,808T>A, g.306,600T>C, and g.315,413C>T were positively correlated with the contents of casein, protein, total solids (TS), and solid nonfat (SNF) in yak milk. In other loci, heterozygous genotypes had a positive correlation with nutrient content in yak milk. Then, two ITGA9 haplotype blocks were constructed based on linkage disequilibrium, which facilitated a more accurate screening of ITGA9 as a candidate gene for yak milk quality improvement. In conclusion, we identified SNPs and haplotype blocks related to yak milk quality traits and provided genetic resources for marker-assisted selection in yak breeding.

2.
Foods ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928854

RESUMEN

Yak milk, known as the "liquid gold", is a nutritious food with extensive consumption. Compared with cow milk, yak milk contains higher levels of nutrients such as dry matter, milk fat, and milk protein, which demonstrates great potential for exploitation and utilization. Protein kinase cGMP-dependent 1 (PRKG1) is an important functional molecule in the cGMP signaling pathway, and its significant influence on milk fatty acids has been discovered. The aim of this study is to explore the correlation between single nucleotide polymorphisms (SNPs) in the PRKG1 gene and the quality traits of Gannan yak milk in order to identify candidate molecular markers for Gannan yak breeding. In this study, genotyping was performed on 172 healthy, 4-5-year-old lactating Gannan yaks with similar body types, naturally grazed, and two to three parity. Three SNPs (g.404195C>T, g.404213C>T, and g.760138T>C) were detected in the PRKG1 gene of Gannan yaks, which were uniformly distributed in the yak population. Linkage disequilibrium analysis was conducted, revealing complete linkage disequilibrium between g.404195C>T and g.404213C>T. After conducting a correlation analysis between SNPs in the PRKG1 gene and milk quality in Gannan yaks, we found that PRKG1 SNPs significantly increased the content of casein, protein, and SNFs in yak milk. Among them, the TT homozygous genotype at the PRKG1 g.404195C>T loci exhibited higher casein and protein contents compared to the CC and CT genotypes (p < 0.05). The SNP g.760138T>C locus was associated with casein, protein, SNFs, and TS traits (p < 0.05). The CC genotype had higher casein and protein contents than the TT and TA genotypes (p < 0.05). However, there were no significant differences in milk fat, lactose, and acidity among the three genotypes (p > 0.05). In summary, PRKG1 gene polymorphism can serve as a candidate molecular marker for improving milk quality in Gannan yaks.

3.
Animals (Basel) ; 14(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791618

RESUMEN

The yak is a unique species of livestock found in the Qinghai-Tibet Plateau and its surrounding areas. Due to factors such as late sexual maturity and a low rate of estrus, its reproductive efficiency is relatively low. The process of estrus synchronization in yaks plays a crucial role in enhancing their reproductive success and ensuring the continuation of their species. In order to clarify the characteristics of the serum metabolites of yak estrus synchronization, the yaks with inactive ovaries were compared with the estrus synchronization yaks. In this study, yaks were divided into the inactive ovaries group (IO), gonarelin-induced yak estrus group (GnRH), and chloprostenol sodium-induced yak estrus group (PGF). After the completion of the estrus synchronization treatment, blood samples were collected from the jugular veins of the non-estrus yaks in the control group and the yaks with obvious estrus characteristics in the GnRH and PGF groups. Metabolites were detected by ultra-high performance liquid chromatography-mass spectrometry, and differential metabolites were screened by multivariate statistical analysis. The results showed that a total of 70 significant differential metabolites were screened and identified in the GnRH vs. IO group, and 77 significant differential metabolites were screened and identified in the PGF vs. IO group. Compared with non-estrus yaks, 36 common significant differential metabolites were screened out after the induction of yak estrus by gonarelin (GnRH) and cloprostenol sodium (PGF), which were significantly enriched in signaling pathways such as the beta oxidation of very long chain fatty acids, bile acid biosynthesis, oxidation of branched chain fatty acids, steroidogenesis, steroid biosynthesis, and arginine and proline metabolism. This study analyzed the effects of gonadotropin releasing hormone (GnRH) and prostaglandin F (PGF) on the reproductive performance of yaks treated with estrus synchronization, which provides a theoretical basis for the optimization and application of yak estrus synchronization technology and promotes the healthy development of the yak industry.

4.
BMC Genomics ; 25(1): 481, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750421

RESUMEN

BACKGROUND: There is no consensus as to the origin of the domestic yak (Bos grunniens). Previous studies on yak mitochondria mainly focused on mitochondrial displacement loop (D-loop), a region with low phylogenetic resolution. Here, we analyzed the entire mitochondrial genomes of 509 yaks to obtain greater phylogenetic resolution and a comprehensive picture of geographical diversity. RESULTS: A total of 278 haplotypes were defined in 509 yaks from 21 yak breeds. Among them, 28 haplotypes were shared by different varieties, and 250 haplotypes were unique to specific varieties. The overall haplotype diversity and nucleotide diversity of yak were 0.979 ± 0.0039 and 0.00237 ± 0.00076, respectively. Phylogenetic tree and network analysis showed that yak had three highly differentiated genetic branches with high support rate. The differentiation time of clades I and II were about 0.4328 Ma, and the differentiation time of clades (I and II) and III were 0.5654 Ma. Yushu yak is shared by all haplogroups. Most (94.70%) of the genetic variation occurred within populations, and only 5.30% of the genetic variation occurred between populations. The classification showed that yaks and wild yaks were first clustered together, and yaks were clustered with American bison as a whole. Altitude had the highest impact on the distribution of yaks. CONCLUSIONS: Yaks have high genetic diversity and yak populations have experienced population expansion and lack obvious phylogeographic structure. During the glacial period, yaks had at least three or more glacial refugia.


Asunto(s)
Variación Genética , Genoma Mitocondrial , Haplotipos , Filogenia , Filogeografía , Animales , Bovinos/genética , Herencia Materna , Femenino , ADN Mitocondrial/genética
5.
Anim Biotechnol ; 35(1): 2344213, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38669244

RESUMEN

Lysozyme like 4 (LYZL4), lysozyme like 6 (LYZL6) and proliferating cell nuclear antigen (PCNA) are implicated in the regulation of testicular function, but there was no research reported available on the expression patterns of LYZL4, LYZL6 and PCNA genes at different developmental stages of yak testes. In this study, we used the qRT-PCR, western blotting and immunohistochemistry estimated the LYZL4, LYZL6 and PCNA gene expression and protein lo-calization at different developmental stages of yak testes. The qPCR results showed that the mRNA expression of LYZL4, LYZL6 and PCNA genes significantly increased with age in the testes of yaks. Western blot results showed that the protein abundance of LYZL4, LYZL6 and PCNA in yak testes was significantly higher after puberty than before puberty. Furthermore, the results of immunohistochemistry indicated that LYZL4, LYZL6 and PCNA may be involved in the regulation of spermatogonia proliferation and Leydig cell function in immature testis. In adult yak testes, LYZL4, LYZL6 and PCNA may involve in the development of round spermatids and primary spermatocytes during testicular development. Our results indicated that LYZL4, LYZL6 and PCNA may be involved in the development of Sertoli cells, Leydig cells and gonocytes in yak testes.


Asunto(s)
Antígeno Nuclear de Célula en Proliferación , Testículo , Animales , Masculino , Testículo/crecimiento & desarrollo , Testículo/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Bovinos/genética , Bovinos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Envejecimiento , Células Intersticiales del Testículo/metabolismo
6.
Foods ; 13(5)2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38472894

RESUMEN

Protein kinase D1 (PRKD1) functions primarily in normal mammary cells, and the potassium voltage-gated channel subfamily Q member 3 (KCNQ3) gene plays an important role in controlling membrane potential and neuronal excitability, it has been found that this particular gene is linked to the percentage of milk fat in dairy cows. The purpose of this study was to investigate the relationship between nucleotide polymorphisms (SNPs) of PRKD1 and KCNQ3 genes and the milk quality of Gannan yak and to find molecular marker sites that may be used for milk quality breeding of Gannan yak. Three new SNPs were detected in the PRKD1 (g.283,619T>C, g.283,659C>A) and KCNQ3 gene (g.133,741T>C) of 172 Gannan lactating female yaks by Illumina yak cGPS 7K liquid-phase microarray technology. Milk composition was analyzed using a MilkoScanTM milk composition analyzer. We found that the mutations of these three loci significantly improved the lactose, milk fat, casein, protein, non-fat milk solid (SNF) content and acidity of Gannan yaks. The lactose content of the TC heterozygous genotype population at g.283,619T>C locus was significantly higher than that of the TT wild-type population (p < 0.05); the milk fat content of the CA heterozygous genotype population at g.283,659C>A locus was significantly higher than that of the CC wild-type and AA mutant populations (p < 0.05); the casein, protein and acidity of the CC mutant and TC heterozygous groups at the g.133,741T>C locus were significantly higher than those of the wild type (p < 0.05), and the SNF of the TC heterozygous group was significantly higher than that of the mutant group (p < 0.05). The results showed that PRKD1 and KCNQ3 genes could be used as candidate genes affecting the milk traits of Gannan yak.

7.
Animals (Basel) ; 14(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473080

RESUMEN

Yak meat is nutritionally superior to beef cattle but has a low fat content and is slow-growing. The liver plays a crucial role in lipid metabolism, and in order to determine whether different feeding modes affect lipid metabolism in yaks and how it is regulated, we employed RNA sequencing (RNA-seq) technology to analyze the genome-wide differential gene expression in the liver of yaks maintained under different raising systems. A total of 1663 differentially expressed genes (DEGs) were identified (|log2FC| ≥ 0 and p-value ≤ 0.05), including 698 down-regulated and 965 up-regulated genes. According to gene ontology (GO) and KEGG enrichment analyses, these DEGs were significantly enriched in 13 GO terms and 26 pathways (p < 0.05). Some DEGs were enriched in fatty acid degradation, PPAR, PI3K-Akt, and ECM receptor pathways, which are associated with lipid metabolism. A total of 16 genes are well known to be related to lipid metabolism (e.g., APOA1, FABP1, EHHADH, FADS2, SLC27A5, ACADM, CPT1B, ACOX2, HMGCS2, PLIN5, ACAA1, IGF1, FGFR4, ALDH9A1, ECHS1, LAMA2). A total of 11 of the above genes were significantly enriched in the PPAR signaling pathway. The reliability of the transcriptomic data was verified using qRT-PCR. Our findings provide new insights into the mechanisms regulating yak meat quality. It shows that fattening improves the expression of genes that regulate lipid deposition in yaks and enhances meat quality. This finding will contribute to a better understanding of the various factors that determine yak meat quality and help develop strategies to improve yield and quality.

8.
Animals (Basel) ; 14(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338049

RESUMEN

Jersey-yak is a hybrid offspring of Jersey cattle and yak (Bos grunniens). Changing the feeding system of Jersey-yak can significantly improve its growth performance. In this study, tandem mass tag (TMT) proteomics technology was used to determine the differentially expressed proteins (DEPs) of the longissimus lumborum (LL) muscle of Jersey-yak fed different protein levels of diet. The results showed that compared with the traditional grazing feeding, the growth performance of Jersey-yaks was significantly improved by crude protein supplementation after grazing. A total of 3368 proteins were detected in these muscle samples, of which 3365 were quantified. A total of 434 DEPs were identified. Through analyses, it was found that some pathways related to muscle growth and development were significantly enriched, such as Rap1 signaling pathway, mTOR signaling pathway, and TGF-beta signaling pathway. A number of DEPs enriched in these pathways are related to muscle cell development, differentiation, and muscle development, including integrin subunit alpha 7 (ITGA7), myosin heavy chain 8 (MYH8), and collagen type XII alpha 1 chain (COL12A1). In conclusion, the results of this study provide insights into the proteomics of different feeding patterns of Jersey-yak, providing a stronger basis for further understanding the biological mechanism of hybrid varieties.

9.
Int J Biol Macromol ; 262(Pt 1): 129985, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342263

RESUMEN

Cattle-yak, which is the hybrid F1 generation of cattle and yak, demonstrates better production performance compared to yak. However, there is limited research on the molecular mechanisms responsible for the muscle development of cattle-yak. To address this knowledge gap, a comprehensive transcriptomic survey of the longissimus dorsi muscle in cattle-yak was conducted. Three transcript types, namely lncRNAs, miRNAs, and circRNAs, along with protein-coding genes were characterized at two developmental stages (6 m, 18 m) of cattle-yak. The results revealed significant enrichment of these transcripts into pathways related to myoblast differentiation and muscle development signaling. Additionally, the study identified the TCONS00024465/circHIPK3-bta-miR-499-ADAMTS6 regulatory network, which may play a crucial role in the muscle development of cattle-yak by combining the transcriptome data of yak and constructing the ceRNA co-expression network. HEK 293 T cells were used to validate that TCONS00024465 and circHIPK3 are located upstream of bta-miR-499, and can competitively bind to bta-miR-499 as ceRNA. The study also verified that ADAMTS6 regulates skeletal muscle development by inhibiting myoblast proliferation, promoting myoblast differentiation, and positively regulating the apoptosis of myoblasts. Taken together, this study provides new insights into the advantages of cattle-yak production performance and offers a molecular basis for further research on muscle development.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs , Animales , Bovinos , Humanos , Células HEK293 , MicroARNs/genética , Mioblastos/metabolismo , Músculo Esquelético/metabolismo
10.
Animals (Basel) ; 13(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37760215

RESUMEN

Studying the mechanism of spermatogenesis is key to exploring the reproductive characteristics of male yaks. Although N6-methyladenosine (m6A) RNA modification has been reported to regulate spermatogenesis and reproductive function in mammals, the molecular mechanism of m6A in yak testis development and spermatogenesis remains largely unknown. Therefore, we collected testicular tissue from juvenile and adult yaks and found that the m6A level significantly increased after sexual maturity in yaks. In MeRIP-seq, 1702 hypermethylated peaks and 724 hypomethylated peaks were identified. The hypermethylated differentially methylated RNAs (DMRs) (CIB2, AK1, FOXJ2, PKDREJ, SLC9A3, and TOPAZ1) mainly regulated spermatogenesis. Functional enrichment analysis showed that DMRs were significantly enriched in the adherens junction, gap junction, and Wnt, PI3K, and mTOR signaling pathways, regulating cell development, spermatogenesis, and testicular endocrine function. The functional analysis of differentially expressed genes showed that they were involved in the biological processes of mitosis, meiosis, and flagellated sperm motility during the sexual maturity of yak testis. We also screened the key regulatory factors of testis development and spermatogenesis by combined analysis, which included BRCA1, CREBBP, STAT3, and SMAD4. This study indexed the m6A characteristics of yak testicles at different developmental stages, providing basic data for further research of m6A modification regulating yak testicular development.

11.
Int J Biol Macromol ; 246: 125728, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37422242

RESUMEN

The changes in semen and cryodamage after the cryopreservation process negatively affect sperm function and motility. However, possible proteomic alterations of yak semen during cryopreservation have not yet been achieved. In this study, we compared proteomes of fresh and frozen thawed yak sperm using iTRAQ combined with LC-MS/MS proteome approach. Totally, 2064 proteins were quantitatively identified, including 161 in fresh sperm that showed significant differences compared to frozen thawed sperm. According to the Gene ontology (GO) enrichment analysis, differentially expressed proteins (DEPs) are predominantly associated with spermatogenesis, tricarboxylic acid cycle, ATP synthesis, and differentiation biological process. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that DEPs were mainly involved in metabolic pathways related to pyruvate metabolism, carbon metabolism, glycolysis/gluconeogenesis, together with the citrate (TCA) cycle. In the analysis of the protein-protein interaction (PPI) network, 15 potential proteins (PDHB, DLAT, PDHA2, PGK1, TP5C1, etc.) that could be related to the sperm quality of the yaks were obtained. Furthermore, 6 DEPs were validated by parallel reaction monitoring (PRM), confirming that the iTRAQ data were reliable. These results indicate that cryopreservation alters the proteome of yak sperm, which is possibly related to cryodamage and fertilization ability.


Asunto(s)
Proteómica , Semen , Animales , Bovinos , Masculino , Cromatografía Liquida , Criopreservación/métodos , Proteoma/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo , Espectrometría de Masas en Tándem
12.
Foods ; 12(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37297417

RESUMEN

This study aimed to investigate the nutritional properties of yak milk in various areas of Gannan. The milk composition analyzer, automatic amino acid analyzer, and flavor analyzer were used to detect the conventional nutrients, amino acids, and volatile flavor substances of 249 yak milks in Meiren grassland, Xiahe grassland, and Maqu grassland (hereinafter referred to as Meiren yak, Xiahe yak, and Maqu yak) in the Gannan area. The results showed that the fat content of Meiren yak milk was significantly higher than that of Maqu yak and Xiahe yak (p < 0.05). The protein content of Meiren yak milk was significantly higher than that of Xiahe yak (p < 0.05), but not significantly different from that of Maqu yak (p > 0.05). The casein content in the milk of Maqu yak was significantly higher than that of Meiren yak and Xiahe yak (p < 0.05). There was no significant difference in the lactose content of yak milk in the three regions (p > 0.05). The content of glutamic acid in the milk of Meiren yak, Xiahe yak, and Maqu yak was noticeably high, which was 1.03 g/100 g, 1.07 g/100 g, and 1.10 g/100 g, respectively. The total amino acid (TAA) content was 4.78 g/100 g, 4.87 g/100 g, and 5.0 g/100 g, respectively. The ratios of essential amino acids (EAA) and total amino acids (TAA) in the milk of Meiren yak, Xiahe yak, and Maqu yak were 42.26%, 41.27%, and 41.39%, respectively, and the ratios of essential amino acids (EAA) and nonessential amino acids (NEAA) were 73.19%, 70.28%, and 70.61%, respectively. In the yak milk samples collected from three different regions, a total of 34 volatile flavor compounds were detected, including 10 aldehydes, five esters, six ketones, four alcohols, two acids, and seven others. The main flavor substances qualitatively obtained from Meiren yak milk were ethyl acetate, n-valeraldehyde, acetic acid, heptanal, and n-hexanal. Xiahe yak milk mainly contains ethyl acetate, isoamyl alcohol, n-valeraldehyde, heptanal, and ethyl butyrate. Maqu yak milk mainly contains ethyl acetate, n-valeraldehyde, isoamyl alcohol, heptanal, ethyl butyrate, and n-hexanal. Principal component analysis showed that the flavor difference between Xiahe yak and Maqu yak was small, while the flavor difference between Xiahe yak, Maqu yak, and Meiren yak was large. The findings of this research can serve as a foundation for the future advancement and application of yak milk.

13.
Animals (Basel) ; 13(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37174583

RESUMEN

Understanding animal growth plays an important role in improving animal genetics and breeding. In order to explore the early growth and development law of Ashidan yak, the body weight (BW), wither height (WH), body oblique length (BL) and chest girth (CG) of 260 female Ashidan yaks were measured. These individuals grew under grazing conditions, and growth traits were measured at 6, 12, 18 and 30 months of age. Then the absolute growth and relative growth of Ashidan yak were calculated, and five nonlinear models (Logistic model, Gompertz model, Brody model, von Bertalanffy model and Richards model) were used to fit the growth curve of Ashidan yak. The fitting effect of the model was evaluated according to MSE, AIC and BIC. The results showed that the growth rate of Ashidan yak was the fastest from 12 to 18 months old, and the growth was slow or even stagnant from 6 to 12 months old. The AIC and BIC values of the Richards model were the lowest among the five models, with an AIC value of 4543.98 and a BIC value of 4563.19. The Richards model estimated body weight at 155.642 kg. In summary, the growth rate of female Ashidan yak changes with the seasons, growing faster in warm seasons and slower in cold seasons. Richards model is the best model to describe the growth curve of female Ashidan yak in five nonlinear models.

14.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175687

RESUMEN

Spermatogenesis is a complex process that involves proliferation and differentiation of diploid male germ cells into haploid flagellated sperm and requires intricate interactions between testicular somatic cells and germ cells. The cellular heterogeneity of this process presents a challenge in analyzing the different cell types at various developmental stages. Single-cell RNA sequencing (scRNA-seq) provides a useful tool for exploring cellular heterogeneity. In this study, we performed a comprehensive and unbiased single-cell transcriptomic study of spermatogenesis in sexually mature 4-year-old yak using 10× Genomics scRNA-seq. Our scRNA-seq analysis identified six somatic cell types and various germ cells, including spermatogonial stem cells, spermatogonia, early-spermatocytes, late-spermatocytes, and spermatids in yak testis. Pseudo-timing analysis showed that Leydig and myoid cells originated from common progenitor cells in yaks. Moreover, functional enrichment analysis demonstrated that the top expressed genes in yak testicular somatic cells were significantly enriched in the cAMP signaling pathway, PI3K-Akt signaling pathway, MAPK signaling pathway, and ECM receptor interactions. Throughout the spermatogenesis process, genes related to spermatogenesis, cell differentiation, DNA binding, and ATP binding were expressed. Using immunohistochemical techniques, we identified candidate marker genes for spermatogonial stem cells and Sertoli cells. Our research provides new insights into yak spermatogenesis and the development of various types of cells in the testis, and presents more reliable marker proteins for in vitro culture and identification of yak spermatogonial stem cells in the later stage.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Testículo , Masculino , Animales , Bovinos , Testículo/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Semen , Espermatogénesis/genética , Espermatogonias/metabolismo , Análisis de Secuencia de ARN
15.
Front Microbiol ; 14: 1124917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200912

RESUMEN

Introduction: The crude protein level in the diet will affect the fermentation parameters, microflora, and metabolites in the rumen of ruminants. It is of great significance to study the effect of crude protein levels in supplementary diet on microbial community and metabolites for improving animal growth performance. At present, the effects of crude protein level in supplementary diet on rumen fermentation parameters, microbial community, and metabolites of Jersey-Yak (JY) are still unclear. Methods: The purpose of this experiment was to study the appropriate crude protein level in the diet of JY. The rumen fermentation indexes (volatile fatty acids and pH) were determined by supplementary diets with crude protein levels of 15.16 and 17.90%, respectively, and the microbial community and metabolites of JYs were analyzed by non-target metabonomics and metagenome sequencing technology, and the changes of rumen fermentation parameters, microbial flora, and metabolites in the three groups and their interactions were studied. Results and Discussion: The crude protein level in the supplementary diet had significant effects on pH, valeric acid, and the ratio of acetic acid to propionic acid (p < 0.05). The protein level had no significant effect on the dominant microflora at the phylum level (p > 0.05), and all three groups were Bacteroides and Firmicutes. The results of metabolite analysis showed that the crude protein level of supplementary diet significantly affected the metabolic pathways such as Bile secretion and styrene degradation (p < 0.05), and there were different metabolites between the LP group and HP group, and these different metabolites were related to the dominant microbial to some extent. To sum up, in this experiment, the effects of crude protein level in supplementary diet on rumen microorganisms and metabolites of JY and their relationship were studied, which provided the theoretical basis for formulating a more scientific and reasonable supplementary diet in the future.

16.
Animals (Basel) ; 13(8)2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37106918

RESUMEN

Epididymis development is the basis of male reproduction and is a crucial site where sperm maturation occurs. In order to further understand the epididymal development of yak and how to regulate sperm maturation, we conducted a multi-omics analysis. We detected 2274 differential genes, 222 differential proteins and 117 co-expression genes in the cauda epididymis of yak before and after sexual maturity by RNA-seq and proteomics techniques, which included TGFBI, COL1A1, COL1A2, COL3A1, COL12A1, SULT2B1, KRT19, and NPC2. These high abundance genes are mainly related to cell growth, differentiation, adhesion and sperm maturation, and are mainly enriched via extracellular matrix receptor interaction, protein differentiation and absorption, and lysosome and estrogen signaling pathways. The abnormal expression of these genes may lead to the retardation of epididymal cauda development and abnormal sperm function in yak. In conclusion, through single and combined analysis, we provided a theoretical basis for the development of the yak epididymal cauda, sperm maturation, and screening of key genes involved in the regulation of male yak reproduction.

17.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901865

RESUMEN

Testicular development is a tightly regulated process in mammals. Understanding the molecular mechanisms of yak testicular development will benefit the yak breeding industry. However, the roles of different RNAs, such as mRNA, lncRNA, and circRNA in the testicular development of yak, are still largely unclear. In this study, transcriptome analyses were performed on the expression profiles of mRNAs, lncRNAs, and circRNAs in testis tissues of Ashidan yak at different developmental stages, including 6-months-old (M6), 18-months-old (M18), and 30-months-old (M30). A total of 30, 23, and 277 common differentially expressed (DE) mRNAs, lncRNAs, and circRNAs were identified in M6, M18, and M30, respectively. Furthermore, functional enrichment analysis showed that the common DE mRNAs during the entire developmental process were mainly involved in gonadal mesoderm development, cell differentiation, and spermatogenesis processes. Additionally, co-expression network analysis identified the potential lncRNAs related to spermatogenesis, e.g., TCONS_00087394 and TCONS_00012202. Our study provides new information about changes in RNA expression during yak testicular development, which greatly improves our understanding of the molecular mechanisms regulating testicular development in yaks.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Masculino , Animales , Bovinos , ARN Mensajero/genética , ARN Circular , ARN Largo no Codificante/genética , Espermatogénesis/genética , Perfilación de la Expresión Génica , Transcriptoma , Mamíferos/metabolismo
18.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768166

RESUMEN

Yaks (Bos grunniens) are the only bovine species that adapt well to the harsh high-altitude environment in the Qinghai-Tibetan plateau. However, the reproductive adaptation to the climate of the high elevation remains to be elucidated. Cell composition and molecular characteristics are the foundation of normal ovary function which determines reproductive performance. So, delineating ovarian characteristics at a cellular molecular level is conducive to elucidating the mechanism underlying the reproductive adaption of yaks. Here, the single-cell RNA-sequencing (scRNA-seq) was employed to depict an atlas containing different cell types with specific molecular signatures in the yak ovary. The cell types were identified on the basis of their specifically expressed genes and biological functions. As a result, a cellular atlas of yak ovary was established successfully containing theca cells, stromal cells, endothelial cells, smooth muscle cells, natural killer cells, macrophages, and proliferating cells. A cell-to-cell communication network between the distinct cell types was constructed. The theca cells were clustered into five subtypes based on their biological functions. Further, CYP11A1 was confirmed as a marker gene for the theca cells by immunofluorescence staining. Our work reveals an ovarian atlas at the cellular molecular level and contributes to providing insights into reproductive adaption in yaks.


Asunto(s)
Ovario , Transcriptoma , Femenino , Bovinos , Animales , Células Endoteliales , Ambiente , Adaptación Fisiológica
19.
BMC Vet Res ; 19(1): 53, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36803968

RESUMEN

BACKGROUND: Normal testicular development is highly crucial for male reproduction and is a precondition for spermatogenesis that is the production of spermatozoa in the testes. MiRNAs have been implicated in several testicular biological processes, including cell proliferation, spermatogenesis, hormone secretion, metabolism and reproductive regulation. In the present study, we used deep sequencing data to study the functions of miRNAs during testicular development and spermatogenesis, by analyzing the expression patterns of small RNAs in 6-, 18- and 30-month-old yak testis tissues. RESULTS: A total of 737 known and 359 novel miRNAs were obtained from 6-, 18- and 30-month-old yak testes. In all, we obtained 12, 142 and 139 differentially expressed (DE) miRNAs in 30- vs. 18-, 18- vs. 6-, and 30- vs. 6-month-old testes, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of all DE miRNA target genes revealed BMP2, TGFB2, GDF6, SMAD6, TGFBR2 and other target genes as participants in different biological processes, including TGF-ß, GnRH, Wnt, PI3K-Akt, MAPK signaling pathways and several other reproductive pathways. In addition, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect the expression of seven randomly selected miRNAs in 6-, 18- and 30-month-old testes, and the results were consistent with the sequencing data. CONCLUSIONS: The differential expression of miRNAs in yak testes at different development stages was characterized and investigated using deep sequencing technology. We believe that the results will contribute to further understanding the functions of miRNAs in regulating the development of yak testes and improving the reproductive performance of male yaks.


Asunto(s)
MicroARNs , Masculino , Bovinos/genética , Animales , MicroARNs/genética , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Testículo/metabolismo , Espermatogénesis/genética , Anotación de Secuencia Molecular , Perfilación de la Expresión Génica/veterinaria
20.
Foods ; 12(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36673349

RESUMEN

Yaks (Bos grunniens) are a critical livestock breed in the plateau region, and changing the feeding system of yaks can significantly improve their growth performance. The effects of different feeding regimes on the growth performance and meat quality of yaks were comprehensively compared here. The transcriptome and proteome of the Longissimus dorsi muscle were determined using RNA-seq and Tandem Mass Tag (TMT) techniques. Indoor feeding significantly improved the growth performance (such as the average daily gain and carcass weight) and meat quality characteristics compared with traditional grazing feeding. In the grazing (Group G) vs. in-house fed group (Group HF) comparison, 40 differentially expressed genes/differentially abundant proteins exhibited the same mRNA and protein expression trends. These genes were associated with collagen binding, the lipoxygenase pathway, and the arachidonic acid metabolic process. Parallel reaction monitoring verified whether the TMT results were reliable. Moreover, some pathways, such as the AMPK signaling pathway, FoxO signaling pathway, PPAR signaling pathway, and fatty acid metabolism, were significantly enriched. These results expand our knowledge about meat quality in yaks and provide practical information and more evidence for further insight into the biological mechanisms underlying meat quality traits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA